Граничные условия

Используя теорему Стокса, получим:

Перепишем это уравнение в виде:

(20)

Здесь и - значения вектора соответственно в средах 1 и 2, - единичный вектор, касательный к поверхности раздела, - нормаль к поверхности раздела, направленная из среды 2 в среду 1.

Пусть теперь при малом, но фиксированном l. Тогда , и соотношение (20) примет вид:

и после сокращения на l имеем:

здесь . Вектор , как следует из рисунка 2, можно записать как в виде . Тогда

предыдущее выражение можно записать, как

.

Поскольку эта формула справедлива для любой ориентации поверхности , а следовательно, и

вектора , то имеем

(21)

В граничном условии (21) присутствует поверхностная плотность тока, избыточная по отношению к токам намагничивания. Если токи отсутствуют, то следует положить =0. Учитывая, что , а есть поверхностная плотность тока намагничивания, запишем формулу (21) в виде:

где .

Используя уравнение (1) и проводя аналогичные рассуждения, получаем граничные условия для вектора :

(22)

Таким образом, уравнения Максвелла (1) - (4) должны быть дополнены граничными условиями (18), (19), (21) и (22). Эти условия означают непрерывность тангенциальных составляющих вектора (22) и нормальной составляющей вектора (19) при переходе через границу раздела двух сред. Нормальная составляющая вектора при переходе через границу раздела испытывает скачок, тангенциальная составляющая вектора , если имеются поверхностные токи (21).

Ещё одно граничное условие можно получить, используя уравнение непрерывности (0) и уравнение (4), из которых следует:

Так как граничное условие (19) является следствием уравнения (2), то по аналогии находим:

(23)

Если же на поверхности раздела нет зарядов, поверхностная плотность которых зависит от времени, то из (18) и (23) следует непрерывность нормальных составляющих плотности тока:

.

Итак, граничные условия на поверхности раздела двух сред имеют вид:

;

(24)

;

где - нормаль к границе раздела, направленная из среды 2 в среду 1, и должны выполняться в любой момент времени и в каждой точке поверхности раздела.

Перейти на страницу: 1 2 

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.