Используя теорему Стокса, получим:
Перепишем это уравнение в виде:
(20)
Здесь и - значения вектора соответственно в средах 1 и 2, - единичный вектор, касательный к поверхности раздела, - нормаль к поверхности раздела, направленная из среды 2 в среду 1.
Пусть теперь при малом, но фиксированном l. Тогда , и соотношение (20) примет вид:
и после сокращения на l имеем:
здесь . Вектор , как следует из рисунка 2, можно записать как в виде . Тогда
предыдущее выражение можно записать, как
.
Поскольку эта формула справедлива для любой ориентации поверхности , а следовательно, и
вектора , то имеем
(21)
В граничном условии (21) присутствует поверхностная плотность тока, избыточная по отношению к токам намагничивания. Если токи отсутствуют, то следует положить =0. Учитывая, что , а есть поверхностная плотность тока намагничивания, запишем формулу (21) в виде:
где .
Используя уравнение (1) и проводя аналогичные рассуждения, получаем граничные условия для вектора :
(22)
Таким образом, уравнения Максвелла (1) - (4) должны быть дополнены граничными условиями (18), (19), (21) и (22). Эти условия означают непрерывность тангенциальных составляющих вектора (22) и нормальной составляющей вектора (19) при переходе через границу раздела двух сред. Нормальная составляющая вектора при переходе через границу раздела испытывает скачок, тангенциальная составляющая вектора , если имеются поверхностные токи (21).
Ещё одно граничное условие можно получить, используя уравнение непрерывности (0) и уравнение (4), из которых следует:
Так как граничное условие (19) является следствием уравнения (2), то по аналогии находим:
(23)
Если же на поверхности раздела нет зарядов, поверхностная плотность которых зависит от времени, то из (18) и (23) следует непрерывность нормальных составляющих плотности тока:
.
Итак, граничные условия на поверхности раздела двух сред имеют вид:
;
(24)
;
где - нормаль к границе раздела, направленная из среды 2 в среду 1, и должны выполняться в любой момент времени и в каждой точке поверхности раздела.