Однако в этой связи уместно зафиксировать и ограниченность таких подходов к построению современной физической картины мира, которые сопряжены с образами сложной самоорганизующейся системы, воспроизводящей в динамике изменений основные характеристик целого как иерархии порядков.
Самоорганизация не сводится только к процессам производства динамического порядка и уровневои организации системы, хотя и обязательно предполагает
аспект. Другим ее аспектом выступает необратимое изменение и развитие, связанное с появлением новых уровней организации и переходами от одного типа саморегуляции к другому. Учет этих аспектов требует применения более сложных образов системной организации, а именно, образов сложных, исторически развивающихся систем. Представления о таких системах включает в качестве особого аспекта идею динамического равновесия, но только в качестве одного из состояний неравновесных процессов, характеризующихся изменением типа динамического равновесия и переходами от одного такого типа к другому.
В современной науке наиболее адекватной этому видению является исследовательская программа, связанная с разработкой динамики неравновесных процессов (И.Пригожин) и синергетики (Г.Хакен, М.Эйген, Г.Николис, Э.Ласло, С.Курдюмов, Г.Малинецкий, Ю.Кли-мантович и др.). Синергетическая парадигма принципиально иначе, чем классическая физика, оценивает место и роль во Вселенной неравновесных и необратимых процессов и их соотношение с равновесными, обратимыми процессами. Если в классической физике неравновесные процессы представали как своего рода отклонение от эталонной ситуации, то новая парадигма именно их ставит в центр внимания, рассматривая как путь к порождению устойчивых структур.
Устойчивости возникают не вопреки, а благодаря неравновесным состояниям. В этих состояниях даже небольшие флуктуации, случайные воздействия порождают аттракторы, выводящие к новой организации; “на всех уровнях, будь то уровень макроскопической физики, уровень флуктуаций или микроскопический уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает "порядок из хаоса"”.
Описание в терминах самоорганизующихся систем поведения квантовых объектов открывает новые возможности построения квантово-механической онтологии. И.Пригожин подчеркивает, что особенности квантово-механического измерения, связанного с редукцией волновой функции, можно истолковать как следствие неустойчивости, внутренне присущей движению микрообъектов, а измерение - как необратимый процесс порождения устойчивостей в динамическом хаосе.
С позиций возникновения порядка из хаоса принтпиальная статистичность предсказаний квантовой механики предстает уже не как результат активности наблюдателя, производящего измерения, а как выражение существенных характеристик самой природы.
Причем нелокальности, проявляющиеся в поведении микрообъектов, как подчеркивают И.Пригожин и К.Джордж, связаны с ростом когерентности квантовых ансамблей по сравнению с классической динамикой. Когерентность же выражает особое свойство самоорганизующихся систем, связанное с их нелинейностью и способностью к кооперативным эффектам, основанным на несиловых взаимодействиях.
“В нашем подходе, — отмечают И.Пригожин и И.Стенгерс, — мир следует одним и тем же законам с измерением или без измерений”; “ .введение вероятностей при нашем подходе совместимо с физическим реализмом, и его не требуется идентифицировать с неполнотой нашего знания. Наблюдатель более не играет активной роли в эволюции природы или по крайней мере играет отнюдь не большую роль, чем в классической физике. И в том, и в другом случае мы можем претворить в действие информацию, получаемую из внешнего мира”.
Весьма интересны результаты, полученные С.П.Курдюмовым при решении задач, связанных с математическим описанием режимов обострения в нелинейной среде. Эти режимы являются существенной характеристикой поведения синергетических систем, а их математическое описание основано на нелинейных связях пространственно-временных координат. Развиваемый применительно к таким ситуациям аппарат, оказывается эффективным в приложении к квантово-механическим задачам. Он позволяет получить уравнение Шредингера и дать объяснение квантованию как выражению свойств нелинейной среды.