Производство структур на основе монокристаллического кремния, удовлетворяющих данным требованиям, – процесс технологически сложный и дорогостоящий. Поэтому внимание было обращено на такие материалы, как сплавы на основе аморфного кремния (a-Si:H), арсенид галлия и поликристаллические полупроводники.Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому. Первые СЭ на его основе были созданы в 1975 году. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки а-Si:Н толщиной 0,5–1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. Кроме того, благодаря существующим технологиям получения тонких пленок аморфного кремния большой площади не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на основе a-Si:Н производят при более низких температурах (300°С): можно использовать дешевые стеклянные подложки, что сократит расход кремния в 20 раз.Пока максимальный КПД экспериментальных элементов на основе а-Si:Н – 12% – несколько ниже КПД кристаллических кремниевых СЭ (~15%). Однако не исключено, что с развитием технологии КПД элементов на основе а-Si:Н достигнет теоретического потолка – 16 %.Наиболее простые конструкции СЭ из а-Si:Н были созданы на основе структуры металл – полупроводник (диод Шотки) (рис. 6). Несмотря на видимую простоту, их реализация достаточно проблематична – металлический электрод должен быть прозрачным и равномерным по толщине, а все состояния на границе металл/а-Si:Н – стабильными во времени. чаще всего солнечные элементы на основе а-Si:Н формируют на ленте из нержавеющей стали или на стеклянных подложках, покрытых проводящим слоем.
|
Рис.6. Конструкция фотоэлемента с барьером Шотки |
При использовании стеклянных подложек на них наносят прозрачную для света проводящую оксидную пленку (ТСО) из SnO2, In2O3 или SnO2+In2O3 (ITO), что позволяет освещать элемент через стекло. Поскольку у нелегированного слоя электронная проводимость выражена слабо, барьер Шотки создается за счет осаждения металлических пленок с высокой работой выхода (Pt, Rh, Pd), которая обуславливает образование области положительного объемного заряда (обедненного слоя) в а-Si:Н. При нанесении аморфного кремния на металлическую подложку образуется нежелательный потенциальный барьер а-Si:Н/металлическая подложка, высоту которого необходимо уменьшать. Для этого используют подложки из металлов с малой работой выхода (Mo, Ni, Nb). Перед нанесением аморфного кремния желательно осадить на металлической подложке тонкий слой (10–30 нм) а-Si:Н, легированный фосфором. Не рекомендуется использовать в качестве материалов электродов легко диффундирующие в аморфный кремний металлы (например, Au и Al), а также Cu и Ag, поскольку а-Si:Н обладает плохой адгезией к ним. Отметим, что Uxx солнечных элементов с барьером Шотки на основе а-Si:Н обычно не превышает 0,6 В.Более высокой эффективностью обладают СЭ на основе аморфного кремния с p-i-n-структурой (рис.7). В этом “заслуга” широкой нелегированной i-области a-Si:H, поглощающей существенную долю света. Но возникает проблема – диффузионная длина дырок в a-Si:H очень мала (~100 нм), поэтому в солнечных элементах на основе a-Si:H носители заряда достигают электродов в основном только благодаря внутреннему электрическому полю, т.е. за счет дрейфа носителей заряда. В СЭ на основе кристаллических полупроводников носители заряда, имея большую диффузионную длину (100 – 200 мкм), достигают электродов и в отсутствие электрического поля. Поскольку в простом p-n-переходе в a-Si:H область сильного электрического поля очень узка и диффузионная длина носителей заряда мала, в большей части СЭ не происходит эффективного разделения носителей заряда, генерируемых при поглощении света. Следовательно, для получения эффективных СЭ на основе p-i-n-сруктуры аморфного гидрогенизированного кремния необходимо добиться во всей i-области однородного мощного внутреннего электрического поля, достаточного для достижения длины дрейфа носителей, соизмеримого с размерами области поглощения (см. рис. 7).
|
Рис.7. Энергетическая зонная диаграмма p-i-n-структуры (а) и расчетное распределение электрического поля (б) |