Две основополагающие идеи квантовой механики.

Поясним отмеченную Резерфордом трудность. Пусть электрон находится на уровне Е1 (рис.1); чтобы перейти на уровень Е2, электрон должен поглотить квант излучения (т.е. фотон) с определенной энергией, равной Е2-Е1. Поглощение фотона с любой другой энергией не может приводить к указанному переходу и по этой причине оказывается невозможным (для простоты рассматриваем только два уровня). Возникает вопрос: каким же образом электрон производит «выбор» «нужного» фотона из падающего потока фотона разной энергии? Ведь, чтобы «выбрать» «нужный» фотон, электрон должен уже «знать» о втором уровне, т.е. должен как бы уже побывать на нем. Однако, чтобы побывать на втором уровне, электрон должен сначала поглотить «нужный» фотон. Возникает замкнутый круг.

Дополнительные противоречие обнаруживаются при рассмотрении скачка электрона с одной орбиты в атоме на другую. Сколь бы ни был быстр переход электрона с орбиты одного радиуса на орбиту другого радиуса, в любом случае он должен происходить в течении конечного промежутка времени. Но тогда непонятно, чему должна равняться энергия электрона в течении этого промежутка времени – ведь электрон уже не находится на орбите, которая отвечает энергии Е1, и в то же время еще не прибыл на орбиту, которая отвечает энергии Е2.

Неудивительно, что в свое время предпринимались попытки получить объяснение экспериментальных результатов без привлечения идеи квантования. В этом смысле показательно известное замечание Шредингера, вырвавшееся у него, что называется, под горячую руку: «Если мы собираемся сохранить эти проклятые квантовые скачки, то я жалею, что вообще имел дело с квантовой теорией!» Однако опыт свидетельствовал в пользу квантования; ни для какой альтернативы не оставалось места.

В подобной ситуации есть один выход: надо ввести какие-то новые идеи, которые вместе с идеей дискретности образовывали бы непротиворечивую схему. Такой новой физической идеей и явилась идея корпускулярно-волнового дуализма.

Идея корпускулярно-волнового дуализма.

Классическая физика знакомит с двумя видами движения – корпускулярным и волновым. Для первого характерны локализация объекта в пространстве и существование определенной траектории его движения. Для второго характерно, напротив, делокализация в пространстве; с волновым движением не сопоставляет никакого локализованного объекта – это есть движение некоей среды. На уровне макроявлений корпускулярное и волновое движение четко разграничены; одно дело – движение брошенного камня, другое – движение волны, набегающей на прибрежный песок.

Эти привычные представления не могут быть перенесены в квантовую механику. На уровне микроявлений указанное выше четкое разграничение между двумя видами движения в существенной мере стирается – движение микрообъекта характеризуется одновременно и волновыми и корпускулярными свойствами. Если схематически рассматривать классические корпускулы и классические волны как два предельных случая описания движения материи, то микрообъекты должны занять в этой схеме место где-то посередине. Они не являются ни «чистыми» (в классическом понимании) корпускулами, ни «чистыми» волнами – они являются чем-то качественно иным. Можно сказать, что микрообъект в какой-то мере похож на корпускулу, в какой-то мере – на волну, причем эта мера зависит, в частности, от условий, в которых рассматривается микрообъект. Если в классической физике корпускула и волна – две взаимоисключающие друг друга противоположности (либо частица, либо волна), то теперь, на уровне микроявлений, эти противоположности объединяются в рамках единого микрообъекта. Это обстоятельство и принято называть корпускулярно-волновым дуализмом («дуализм» означает двойственность).

Первоначально идея дуализма была применена к электромагнитному излучению. Еще в 1917г. Эйнштейн предложил рассматривать введенные Планком кванты излучения как своеобразные частицы, обладающие не только определенной энергией, но и определенным импульсом:

E = hω, p = hω / c.

Позднее (с 1923 г.) эти частицы стали называть фотонами.

Весьма ярко корпускулярные свойства излучения проявились в эффекте Комптона (1923 г.). Пусть пучок рентгеновских лучей рассеивается на атомах вещества. По классическим представлениям рассеянные лучи должны иметь ту же длину волны, что и падающие. Однако опыт показал, что длина волны рассеянных лучей больше начальной длины волны, причем разница в длинах волн зависит от угла рассеяния. Эффект Комптона получил объяснение в предположении, что пучок рентгеновских лучей ведет себя как поток фотонов, которые испытывают упругие столкновения с электронами атомов, с выполнением закона сохранения энергии и импульса для сталкивающихся частиц. При этом достигалось не только качественное, но и количественное согласие с экспериментом.

В 1924 г. де Бройль предложил распространить идею не только на излучение, но и вообще на все микрообъекты. Конкретно, он предложил с каждым микрообъектом связывать, с одной стороны, корпускулярные характеристики (энергию Е и импульс р.), а с другой стороны, волновые характеристики (частоту ω и длину волны λ). Взаимосвязь между характеристиками разного типа осуществляются, по де Бройлю, через постоянную Планка h следующим образом:

Перейти на страницу: 1 2 3 4

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.