В последние годы интенсивно изучали электронную структуру и разнообразие физических свойств сплавов переходных металлов. Для изучения магнитных свойств сплавов переходных металлов очень полезным оказался метод рассеяния медленных нейтронов. Исследование упругого и неупругого рассеяния медленных нейтронов в сплавах позволяет получить уникальную информацию о магнитных моментах и форм-факторах, а также об изменении спин-волновой жесткости.
Небходимо отметить, что нейтронные исследования распределения магнитного момента в магнитных сплавах и изменение спин-волновой жесткости во многом стимулировали развитие современных методов расчета электронной структуры неупорядоченных сплавов, которые чрезвычайно полезны для решения многих задач физики твердого тела. К ним относят широко теперь известный метод когерентного потенциала [160].
Модель Хаббарда окозалась очень полезной для описания многих электронных и магнитных свойств сплавов переходных металлов и успешно применяется в большом количестве работ. При описании неупорядоченных сплавов с помощью модели Хаббарда вводятся случайные параметры, поэтому говорят о модели Хаббарда со случайными параметрами.
Перейдем к ее описанию. Предполагается, что взаимодействие электронов в бинарном неупорядоченном сплаве из двух магнитных компонент описывается следующим модельным гамильтонианом:
(69)
Здесь, как и в (11), , - операторы уничтожения и рождения электронов Ванье в узле i со спином s. Считается, что интегралы перескока одинаковы для обоих сортов атомов А и В, т.е. ; зонная структура чистых компонент А и В в отсутствие кулоновского взаимодействия одинаковая. Величины и - одночастичный потенциал и внутриатомное кулоновское взаимодействие соответственно:
(70)
Для неупорядоченного сплава величины и принимают случайные значения в зависимости от того, заполнен ли узел атомом А или В.
Гамильтониан (69) исследовали многие авторы в различных предельных случаях. Если предположим, что какая-либо из компонент сплава (например, В) состоит из немагнитных атомов, то можно положить параметр . Этот случай соответствует модели Вольфа [161, 162]. Если положим в (69), получим модельный гамильтониан, который рядом авторов [163, 164] был использован для теоретического описания сплава Pd-Ni. Случай, когда , рассмотрен Лютером и Фульде [165] для анализа рассеяния парамагнонов на примесях; Ямада и Шимицу [166] рассчитали спин-волновой спектр. Мория {167] детально исследовал электронную структуру вблизи магнитной примеси () в немагнитной матрице () и рассчитал целый ряд физических характеристик примесной системы. Взаимодействие между примесями было рассмотрено в [168]. Все упомянутые работы [161-168] ограничены приближением сильно разбавленного сплава.
Метод когерентного потенциала [160] позволяет рассматривать сплав с конечной концентрацией примесей. Можно выделить два направления работ, использующих метод когерентного потенциала для описания неупорядоченных сплавов.
Начало первому направлению положила работа [169]. В ней была дана теоретическая интерпретация зависимости от концентрации средней намагниченности, атомных моментов компонент и электронной теплоемкости для сплава NicFe1-c. К этому направлению примыкают работы [170-174].
Подход Хасегава и Канамори (ХК) основан на использовании приближения Хартри-Фока для описания внутриатомной кулоновской корреляции. В этом случае гамильтониан (69) записывался в следующем виде [169]:
(71)
где
(71а)
таким образом, неупорядоченность, описываемая в рамках приближения когерентного потенциала, характеризуется двумя параметрами и . Средние числа заполнения в (71а), которые различаются для разных компонент сплава ( или , iÎA, или В), должно определяться самосогласованным образом. Последнее обстоятельство приводит к тому, что не каждая элементарная ячейка является электрононейтральной и может иметь место перенос конечного заряда.