Подставив в уравнение (10) значение , равное как было сказано выше , убеждаемся, что максимальная полезная внешняя работа адиабатически изолированной системы при обратном изменении равняется убыли внутренней энергии системы:
(12)
Величина представляет собой максимальную полезную внешнюю работу адиабатически изолированной внешней системы при обратимом изменении её состояния, когда объём и энтропия системы сохраняют неизменное значение.
Из термодинамического тождества можно получить также выражение для максимально полезной внешней работы в том случае, когда при обратном изменении состояния системы не меняются величины и ;
(13)
Найдём теперь работу, производимую телом при изоэнтропическом процессе. Если состояние тела, находящегося в окружающей среде, изменяется изоэнтропически, то , и поэтому согласно уравнению (10) максимальная полезная внешняя работа тела
. (14)
Если давление тела при изоэнтропическом процессе не меняется и равняется давлению окружающей среды, т.е. , то на основании выражения (11)
(15)
Выражение (13) сохраняет свою силу и в том случае, если давление тела в начальном и конечном состояниях равно давлению окружающей среды , , а в промежуточных состояниях , т.е. тело в начальном и конечном состояниях находится в равновесии с окружающей средой, а в промежуточных состояниях равновесие между телом и средой отсутствует.
Поскольку тело вместе с окружающей средой представляет собой адиабатически изолированную систему, то уравнение (13) определяет также полезную внешнюю работу адиабатически изолированной системы при условии , .
Вычислим, далее, работу производимую телом в изометрическом процессе, когда температура тела равна температуре окружающей среды, т.е. . Если к тому же объём тела не меняется, т.е. , то согласно выражению (10)