Говоря о фундаментальной теории, обычно подразумевают квантовую теорию, описываемую уравнениями квантовой механики. Однако уравнения описывающие гравитационное поле (четвертое взаимодействие) - классические, а не квантовые. Они служат приближением к истинным квантовым уравнениям и перестают работать, если расстояние между объектами очень мало или их энергии слишком велики. Классические гравитационные уравнения (в Общей Теории Относительности) на маленьких расстояниях (~) перестают описывать реально протекающие процессы. Однако с квантованием гравитации у ученых возникли проблемы, решить которые им не удается и по сей день, хотя такое явление как электромагнетизм легко квантуется. Разрабатываемые теории содержали противоречия. Гравитация описывает не свойства пространства-времени, а непосредственно его физическую сущность. Для устранения противоречий, ученые математики и физики сделали предположение о существовании струн, создав новую теорию.
Вместо точечных объектов - частиц – эта теория оперирует протяженными объектами - струнами. Струна не материальна, тем не менее, ее можно представлять себе приближенно в виде некой натянутой нити, веревки, или, например, скрипичной струны, находящейся в десятимерном пространстве-времени. При этом надо помнить что струна - фундаментальный объект, который ни из чего не состоит (ее нельзя разделить на несколько меньших объектов). Струны могут быть замкнутыми или незамкнутыми (открытыми). Колебания струны (как и колебания струн у гитары) могут происходить с разными частотами (гармониками), начиная с некоторой низшей (основной) частоты. Фундаментальность открытия в том, что на достаточно большом расстоянии от струны ее колебания воспринимаются как частицы, и колеблющаяся струна с некоторой комбинацией основных гармоник (как и у реальной струны) порождает множество, целый спектр разных частиц. На большом расстоянии от струны Частицы выглядят как кванты известных полей – гравитационного и электромагнитного. Отсюда возникает представление о том, что частицы в квантовых теориях - не кусочки вещества, а определенные состояния более общей сущности - поля. Масса частиц - полей возрастает по мере увеличения частоты породивших их колебаний.
Но зададимся вопросом - а является ли описание струны последовательно математическим? Для избежания противоречия теория струн должна быть построена особым образом. Итак: теория очень быстро приходит к внутреннему противоречию, если размерность пространства - времени не равна 26.
Распространяясь в 26-мерном пространстве – времени, струна, как объект одномерный, рисует поверхность, называемую мировым листом (по аналогии с мировой линией, которую рисует частица в 4-мерном пространстве - времени). Мировые листы замкнутых и незамкнутых струн различаются. Двумерная поверхность мирового листа служит “ареной”, на которой может происходить какой-либо процесс. Например, на ней могут существовать двумерные (не наблюдаемые непосредственно) поля. Свойства струны в значительной степени зависят от конкретных частиц, находящихся на мировом листе, образованном ей. Пока струна существует в 26-мерном пространстве - времени, на ней ничего нет, но если что-то появится, она, возможно, сможет существовать в пространстве с меньшим количеством измерений. Если рассматривать так называемую простую или бозонную струну, степени свободы возникающих на листе) двумерных полей в определенном смысле играют роль недостающих пространственных размерностей и тем самым в пространствах меньшей размерности восстанавливают 26-мерность.