Суперструны.

Существует теория, базирующаяся на предыдущей и основанная на суперсимметрии. Чтобы понять, в чем она заключается, нужно уяснить смысл термина «измерение». Под измерением понимают некие характеристики системы. Классический пример - кубики разных цветов. Цвет можно принять за дополнительное измерение к общеизвестным трём - высоте, длине и ширине. Симметрия - это инвариантность относительно некоторых преобразований. С повышением температуры системы уровень её симметричности повышается. Иначе говоря, растет хаотичность, неупорядоченность и уменьшается число параметров, пригодных для описания этой системы. Таким образом, теряется информация, которая позволяет различить две любые точки внутри системы. Например, на ранних этапах своей жизни физическая вселенная была очень горячей (ее температура была миллионы миллиардов градусов) и в ней существовала симметрия, но с понижением температуры (сейчас средняя температура вселенной около трёх градусов по Кельвину) симметричность нарушается.

Все «элементарные» частицы делятся на два класса — бозоны и фермионы. Первые, например фотон и гравитон, могут собираться вместе в большие скопления, в отличие от них каждый фермион должен подчиняться принципу Паули. К фермионам относится в частности электрон. Различия физического поведения разных типов частиц требуют различного математического описания.

И бозоны, и фермионы могут сосуществовать в одной физической системе, и такая система может обладать особым видом симметрии — суперсимметрией. Она отображает бозоны в фермионы и обратно. Для этого, естественно, требуется равное количество обоих видов частиц, но этим условия суперсимметрии не ограничиваются. Суперсимметричные системы могут существовать только в так называемом суперпространстве. Оно отличается от обычного пространства-времени наличием называемых фермионных координат и преобразования суперсимметрии в нем похожи на вращения и сдвиги в обычном пространстве. В суперпространстве частицы и поля представляются набором частиц и полей обычного пространства, со строго фиксированным количественным соотношением бозонов и фермионов и их характеристик (спин и т. п.). Входящие в такой набор частицы-поля называют суперпартнёрами.

Суперпартнеры «сглаживают» друг друга. Это явление, наряду с особенностями геометрии суперпространств, значительно затрудняет объяснение процессов, происходящих в суперпространствах, с точки зрения квантовой теории. Струны, существующие в суперпространстве, называются суперструнами. Иными словами, струна в обычном пространстве, на мировом листе которой существует определенный набор фермионных полей, и есть суперструна.

Суперсимметрия накладывает определенные ограничения на поведение суперструн. В суперпространстве не может возникнуть тахионов, так как из-за его свойств у тахиона не может быть суперпартнера. Кроме того, благодаря суперсимметрии, возникает такое состояние, в котором суперструна избавлена от противоречий. Размерность такого пространства оказывается равной 10. Причем фермионы населяют мировой лист суперструны уже в выделенной 10-размерности и именно их присутствие делает струну суперсимметричной.

В 10-мерном пространстве, на достаточном расстоянии от струны возникает суперсимметричный вариант гравитации, названный супергравитацией. Оказалось, что супергравитация возможна только при условии, что размерности пространства-времени находятся в пределах от 2-х до 11-ти. Десятимерные теории супергравитации представляют собой предел, к которому сводится теория суперструн на больших расстояниях, а супергравитации в пространствах меньшей размерности получаются из десятимерных.

Таким образом, известные ранее теории поля оказались пределом теории суперструн, а их симметрии частью симметрии струнной теории. Однако, 11-мерная супергравитация представляется здесь лишней, и поэтому не вполне понятной.

Какое же взаимодействие четырехмерной физики и теории суперструн возможно в десятимерии? Идея взаимного влияния пространств различной размерности называется теорией Калуцы-Клейна. Рассмотрим самый простой случай — приведение пятимерного мира к четырехмерному. Для этого в пятимерии нужно рассматривать не «плоское» пространство, а пространство, представленное в виде «цилиндра», т. е. считать одно из измерений свернутым в кольцо. Скрученный в тонкую полоску лист бумаги больше похож на линию, чем на плоскость, а линия — одномерное пространство. Но все же он остается именно трубкой. Но представим, что по этому листу бумаги движутся какие-то частицы. Пока лист не скручен или радиус трубки не слишком мал, эти частицы движутся во всех направлениях. По мере того, как радиус цилиндра уменьшается, частицы движутся вокруг трубки все быстрее и быстрее, а их движение вдоль трубки остается без изменения и происходит с той же скоростью, что и на плоском листе. Если диаметр трубки приближается к размеру самой частицы, время, за которое частица проходит полный круг настолько мало, что мы не можем его фиксировать, нам кажется, что она движется только вдоль «плоского» направления, вдоль трубки. Таким образом, двумерное пространство свелось к одномерному. В действительности движение по измерениям, закрученным в кольцо, не удаётся заметить, так как действует принцип неопределённости. Чем меньше размеры окружности, тем больше энергии нужно затратить, чтобы частица двигалась по ней. Поэтому, как только измерения сворачиваются в маленькие окружности, не хватает энергии, чтобы заставить частицу двигаться по ней, таким образом, это измерение как бы исчезает.

Перейти на страницу: 1 2 3 4

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.