Сцинтилляционные счетчики обладают следующими достоинствами.
Высокая разрешающая способность по времени.
Длительность импульса в зависимости от используемых сцинтилляторов простирается от 10-6 до 10-9 сек, т.е. на несколько порядков меньше, чем у счетчиков с самостоятельным разрядом, что позволяет осуществлять намного большие скорости счета. Другой важной временной характеристикой сцинтилляционных счетчиков является малая величина запаздывания импульса после прохождения регистрируемой частицы через фосфор (10-9—10-8 сек). Это позволяет использовать схемы совпадений с малым разрешающим временем (<10-8 сек) и, следовательно, производить измерения совпадений при много больших нагрузках по отдельным каналам при малом числе случайных совпадений.
Высокая эффективность регистрации
g
-лучей и нейтронов.
Для регистрации g-кванта или нейтрона необходимо, чтобы они прореагировали с веществом детектора; при этом возникшая вторичная заряженная частица должна быть зарегистрирована детектором. Очевидно, что чем больше находится вещества на пути g-лучей или нейтронов, тем большей будет вероятность их поглощения, тем большей будет эффективность их регистрации. В настоящее время при использовании больших сцинтилляторов добиваются эффективности регистрации g-лучей в несколько десятков процентов. Эффективность регистрации нейтронов сцинтилляторами со специально введенными веществами (10В, 6Li и др.) также намного превышает эффективность регистрации их с помощью газоразрядных счетчиков.
Возможность энергетического анализа регистрируемого излучения. В самом деле, для легких заряженных частиц (электроны) интенсивность вспышки в сцинтилляторе пропорциональна энергии, потерянной частицей в этом сцинтилляторе.
С помощью сцинтилляционных счетчиков, присоединенных к амплитудным анализаторам, можно изучать спектры электронов и g-лучей. Несколько хуже обстоит дело с изучением спектров тяжелых заряженных частиц (a-частицы и др.), создающих в сцинтилляторе большую удельную ионизацию. В этих случаях пропорциональность интенсивности вспышки потерянной энергии наблюдается не при всяких энергиях частиц и проявляется только при значениях энергии, больших некоторой величины. Нелинейная связь амплитуд импульсов с энергией частицы различна для различных фосфоров и для различных типов частиц. Это иллюстрируется графиками на рис.1 и 2.
Возможность изготовления сцинтилляторов очень больших геометрических размеров. Это означает возможность регистрации и энергетического анализа частиц очень больших энергий (космические лучи), а также частиц, слабо взаимодействующих с веществом (нейтрино).
Возможность введения в состав сцинтилляторов веществ, с которыми с большим сечением взаимодействуют нейтроны. Для регистрации медленных нейтронов используют фосфоры LiJ(Tl), LiF, LiBr. При взаимодействии медленных нейтронов с 6Li идет реакция 6Li(n,a)3Н, в которой выделяется энергия в 4,8 Мэв.