(10)
Из этих алгебраических уравнений находим α, β, В и a:)
(11 ), (12), (13), (14)
Если энергия частицы Е больше высоты барьера Um, то показатель преломления пт действителен. В этом случае интенсивность отраженной волны | В| 2 равна
|
а интенсивность проходящей волны
(15)
Вычислим по формуле для плотности тока поток частиц в падающей волне, (JQ), отраженной (Jr) и проходящей (Jd ). Получаем:
(16)
Отношение потока отраженных частиц к потоку падающих
(17)
называют коэффициентом отражения. Отношение потока проходящих частиц к потоку падающих
(18)
называют коэффициентом прозрачности барьера.
Из закона сохранения числа частиц (уравнение непрерывности для тока) следует, что
(19)
(приведенные выше выражения для R и D позволяют непосредственно убедиться в справедливости этого равенства).
По классической механике, если E>Um, должно иметь место R=0, D=1 барьер совершенно прозрачен. Из (15) следует, что | В| 2 ≠0 поэтому в квантовой механике R > О, D < 1. Частицы частью отражаются так же, как отражаются световые волны на границе двух сред.
Если энергия частицы Е меньше высоты барьера Um , то по классической механике имеет место полное отражение D = 0, R=1. При этом частицы совсем не проникают внутрь барьера. В оптике такой случай отвечает полному внутреннему отражению. Согласно геометрической оптике лучи света не проникают во вторую среду.
Более тонкое рассмотрение на основе волновой оптики показывает, что в действительности световое поле при полном отражении все же проникает в среду, от которой происходит отражение и если эта среда представляет собой очень тонкую пластинку, то свет частично проходит через нее. Квантовая механика в случае Е < Um (случай отражения) приводит к выводу, аналогичному выводу волновой оптики. Действительно, если E < Um, то показатель преломления пт является, чисто пт мнимой величиной (см. 4). Поэтому мы положим
(20)
Внося это выражение для пт в (14), вычислим теперь |а|2. Тогда, считаяполучаем
(21)
Обозначая первый дробный множитель через Do (он не очень отличается от 1) и имея в виду значение k6, получаем
(22)
Таким образом, при E<.Um, в противоположность выводам классической механики, частицы проходят через барьер.
Явление прохождения через потенциальный барьер получило образное название туннельного эффекта.
Очевидно, что туннельный эффект будет иметь заметное значение лишь в тех случаях, когда D не слишком мал, т. е. когда