Трехмерный потенциальный барьер. Квазнстационарные состояния.

мы получим из (4.9)

(99.11)

Согласно нашему предположению о виде U (г) уравнение (99.11) разобьется на три;

(99.12) (99.12")(99.12'):

где:

(99.13):

Решения этих уравнений имеют вид

(99.14) (99.14') (99.14")

Из условия конечности ψ в нуле следует, что

(99.15)

Кроме того, условие излучения дает b = 0 (только уходящие волны). Краевые условия на границах r = r 1 и r = r 2, как мы установили в § 1,

сводятся к равенству функций и их первых производных

(99.16) (99.16’) (99.17) (99.17')

На этот раз мы имеем четыре однородных уравнения для четырех коэффициентов A, α, β, а. Поэтому необходимо, чтобы определи­тель ∆ системы уравнений (4.16) и (4.17) обращался в нуль. Несложные вычисления дают

(4.18)

где l означает ширину барьера r2 - r 1 (4.18) есть трансцендент­ное уравнение для k. Определим его корни приближенно, считая ql » l. Тогда в нулевом 'приближении можно отбросить член с e -gl, и мы получаем

(4.19)

Это — точное уравнение для нахождения собственных значений потенциальной ямы (0, r1, Um), изображенной на рис. 4.2 и полу­чаемой из потенциального барьера рис. 4.2 при r2 = ∞. В такой потенциальной яме имеются дискретные уровни энергии (для E<.Um). Если корни уравнения (4.19) обозначить через k01, kO2,… kn,…, то энергия этих уровней будет (согласно (4.13)) равна

(99.20)

Корни действительны, если λ = 0, и по порядку величины равны. В этом случае мы имеем стационарные состояния. При конечной ширине барьера асимптотическое поведение потенциаль­ной энергии таково, что U(r)r→∞ < Е, и вместо дискретного спектра (4.20) мы получаем непрерывный. Однако условие излу­чения выбирает из непрерывного спектра уровни, близкие к Еоп, но они не будут теперь стационарными ( λп ≠ 0). При малых λп они будут почти стационарными. Это — квазистационарные уровни. Определим величину λп, считая ее малой. Для этого разложим член с eql в (4.18) по степеням ∆k = k — ko, где k0 — один из корней уравнения (4.19), для ста­ционарных состояний потенциальной ямы, а в член с e-gl под­ставим k = k0; замечая, что

получим

Отсюда находим ∆k

При этом малую поправку к действительной части k0 мы также можем опустить, как не представляющую интереса. Мнимая же часть будет равна .

' (99.21)

Пренебрегая также малой поправкой к действительной части , k в (4.13), мы можем положить . Из (4.13) получаем

. (4.22)

Перейти на страницу: 1 2 3 4

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.