Квантовая теория

Гейзенберг сформулировал принцип неопределенности, в соответствии с которым координаты и импульс не могут одновременно принимать точные значения. Для предсказания положения и скорости частицы важно иметь возможность точно измерять ее положение и скорость. При этом чем точнее измеряется положение частицы (ее координаты), тем менее точными оказываются измерения скорости.

Хотя световое излучение состоит из волн, однако в соответствии с идеей Планка, свет ведет себя как частица, ибо излучение и поглощение его осуществляется в виде квантов. Принцип неопределенности же свидетельствует о том, что частицы могут вести себя как волны - они как бы "размазаны" в пространстве, поэтому можно говорить не об их точных координатах, а лишь о вероятности их обнаружения в определенном пространстве. Таким образом, квантовая механика фиксирует корпускулярно-волновой дуализм - в одних случаях удобнее частицы считать волнами, в других, наоборот, волны частицами. Между двумя волнами-частицами можно наблюдать явление интерференции. Если гребни одной волны совпадают с впадинами другой волны, то они гасят друг друга, а если гребни и впадины одной волны совпадают с гребнями и впадинами другой волны, то они усиливают друг друга.

д) Интерпретации квантовой теории.

Принцип дополнительности

Возникновение и развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени, характере познания и т.д., что способствовало коренному преобразованию картины мира. Для классического понимания материальной частицы было характерно резкое ее выделение из окружающей среды, обладание собственным движением и местом нахождения в пространстве. В квантовой теории частица стала представляться как функциональная часть системы, в которую она включена, не имеющая одновременно координат и импульса. В классической теории движение рассматривалось как перенос частицы, остающейся тождественно самой себе, по определенной траектории. Двойственный характер движения частицы обусловил необходимость отказа от такого представления движения. Классический (динамический) детермизм уступил место вероятностному (статистическому). Если ранее целое понималось как сумма составляющий частей, то квантовая теория выявила зависимость свойств частицы от системы, в которую она включена. Классическое понимание познавательного процесса было связано с познанием материального объекта как существующего самого по себе. Квантовая теория продемонстрировала зависимость знания об объекте от исследовательских процедур. Если классическая теория претендовала на завершенность, то квантовая теория с самого начала развертывалась как незавершенная, основывающаяся на ряде гипотез, смысл которых вначале был далеко не ясен, а поэтому ее основные положения получали разное истолкование, разные интерпретации.

Разногласия выявились прежде всего по поводу физического смысла двойственности микрочастиц. Де Бройль вначале выдвинул концепцию волны-пилота, в соответствии с которой волна и частица сосуществуют, волна ведет за собой частицу. Реальным материальным образованием, сохраняющим свою устойчивость, является частица, поскольку именно она обладает энергией и импульсом. Волна, несущая частицу, управляет характером движения частицы. Амплитуда волны в каждой точке пространства определяет вероятность локализации частицы рядом с этой точкой. Шредингер проблему двойственности частицы решает по сути путем ее снятия. Для него частица выступает как чисто волновое образование. Иначе говоря, частица есть место волны, в котором сосредоточена наибольшая энергия волны. Интерпретации де Бройля и Шредингера представляли собой по сути попытки создать наглядные модели в духе классической физики. Однако это оказалось невозможным.

Гейзенбергом была предложена интерпретация квантовой теории, исходя (как было показано ранее) из того, что физика должна пользоваться только понятиями и величинами, основанными на измерениях. Гейзенберг поэтому и отказался от наглядного представления движения электрона в атоме. Макроприборы не могут дать описание движения частицы с одновременной фиксацией импульса и координат (т.е. в классическом смысле) по причине принципиально неполной контролируемости взаимодействия прибора с частицей - в силу соотношения неопределенностей измерение импульса не дает возможности определить координаты и наоборот. Иначе говоря, по причине принципиальной неточности измерения предсказания теории могут иметь лишь вероятностный характер, причем вероятность является следствием принципиальной неполноты информации о движении частицы. Это обстоятельство привело к выводу о крушении принципа причинности в классическом смысле, предполагавшим предсказание точных значений импульса и координаты. В рамках квантовой теории, таким образом, речь идет не об ошибках наблюдения или эксперимента, а о принципиальном недостатке знаний, которые и выражаются с помощью функции вероятности.

Перейти на страницу: 1 2 3 4 5 6 7 8

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.