Цель работы
Определить сопротивление не нагретой и нагретой металлической проволоки, ее удлинение при нагревании и коэффициент линейного расширения.
Приборы и принадлежности
Нихромовая проволока (Ni 90 %, Сr 10 %), источник питания постоянного тока, вольтметр, амперметр, пружина, шкала для измерения длины проволоки.
Теоретическое введение
Опыт показывает, что с повышением температуры происходит расширение твердя тел, называемое тепловым расширением. Для характеристики этого явления введены коэффициенты линейного и объемного расширения. Пусть l0 - длина тела при температуре 0 ˚С. Удлинение этого тела ∆l при нагревании его до температуры t°С пропорционально первоначальной длине l0 и температуре:
где α - коэффициент линейного расширения, характеризующий относительное удлинение ∆l/l, происходящее при нагревании тела на 1 К.
Длина тела при температуре t
отсюда
Тепловое расширение большинства твердых тел весьма незначительно. Поэтому длина l0 при 0 °С очень мало отличается от длины l при другой температуре t, например комнатной. Поэтому в выражении коэффициента линейного расширения (41) l0 можно заменить на l1, а l - на длину l2 при температуре t2, значительно большей, чем t1:
Причина расширения твердых тел при нагревании - возрастание амплитуды тепловых колебаний атомов. График зависимости потенциальной энергии взаимодействия соседних атомов от расстояния между их центрами r приведен на рис. 9. Пунктиром показан уровень полной энергии E взаимного колебания атомов при данной температуре. При данной энергии Е расстояние между атомами при тепловых колебаниях изменяется от r1 до r2. Если r0<r<r1 (атомы сближаются), между атомами действуют силы отталкивания. Когда r=r0, полная энергия равна кинетической энергии теплового колебательного движения. При уменьшении r до r1 происходит переход кинетической энергии в потенциальную энергию взаимодействия атомов. Далее под действием сил отталкивания атом движется в сторону увеличения r . Его кинетическая энергия возрастает, а потенциальная - уменьшается. Когда r становится больше r0, возникают силы притяжения между атомами, кинетическая энергия атома уменьшается, а потенциальная увеличивается. В точке r=r2, полная Е энергия переходит в потенциальную. Далее под действием сил притяжения атомы начинают сближаться И весь процесс колебаний атома между точками r1 и r2 повторяется.
Как видно из рис.9, вследствие несимметричности кривой и(r) среднее расстояние между соседними атомами при данной температуре
больше, чем r0, и возрастает с ростом температуры, так как увеличивается полная энергия атома.
Описание лабораторной установки и метода измерений.
Схема лабораторной установки приведена на рис. 10.
Нихромовая проволока 1 закреплена между клеммами 2, 3, причем клемма 3 соединена с растягивающей пружиной 4. По проволоке течет постоянный ток. Сила тока I измеряется амперметром A, а напряжение U вольтметром V . По закону Джоуля - Ленца в проводнике, по которому течет ток, выделяется тепло
зависящее от времени его прохождения t, сопротивления проводника R и силы тока I. Проводник нагревается, сопротивление металла увеличивается с ростом температуры по закону
где R1 - сопротивление проводника при комнатной температуре t1°С;
R2 - его сопротивление при нагревании до температуры t2°С;
β - температурный коэффициент сопротивления нихромовой проволоки,
Из соотношения (43) можно определить разность температур
зная сопротивления R1 и R2.
Сопротивление R1, определяется по формуле
где ρ - удельное сопротивление нихрома при t1 = 20 °С; ;
l1 - длина проволоки при комнатной температуре, м, l1 = 0,34; d - ее диаметр, мм, d = 0,4.