Для оптимального выполнения первого условия выявления дефекта величина должна иметь максимальное значение. Где Vд – сигнал от дефекта, а V0 – сигнал посылаемый преобразователем.
Также, зачастую от правильного выбора частоты ультразвуковых колебаний зависит мощность по,лучения сигнала от дефекта, и как следствие, точность определения дефекта. Можно сказать, что частота является одним из главных параметров, от выбора которых зависит выявление. Остановимся подробно на её выборе. Как известно, частота зависит от коэффициента затухания. Для большинства материалов в диапазоне частот, применяемых в дефектоскопии, эта зависимость приближенно выражается формулой:
|
(2.3.1) |
где и - коэффициенты, не зависящие от частоты.
Первый член связан с поглощением, второй – с рассеянием ультразвука мелкими зернами (кристаллитами) металла.
При малых расстояниях от преобразователя до дефекта влияние затухания ультразвука невелико, поэтому в ближней зоне целесообразно применение высоких частот. В дальней зоне затухание имеет очень большое значение для рационального выбора частоты.
Оптимальная частота ультразвуковых колебаний определяется формулой
|
(2.3.2) |
где С1 – коэффициент, связанный с поглощением ультразвука r – расстояние от преобразователя ультразвуковых волн до дефекта |
для мелкозернистых материалов. А для крупнозернистых оптимальная частота находится по формуле:
|
(2.3.3) |
где С2 в зависимости от соотношения λ и равна или (где - средний диаметр кристаллита) r – расстояние от преобразователя ультразвуковых волн до дефекта |
Таким образом, в обоих случаях с увеличением толщины изделия следует понижать частоту.