h=Rcosβ(1-cosα), (93)
В этом случае выражение (92) принимает вид
Amp=mgRcosβ(cosαn-cosα0)=
=
поскольку для малых углов (α≤5º0,09 рад) sinαα,
то
Тогда
Сопоставляя соотношения (90) и (95), получаем выражение для коэффициента трения
где α0 и αn выражены в радианах. Поскольку шкала для измерения углов @@ про градуирована в градусах, то рабочий вид формулы (96) имеет вид:
где углы α0 и αn выражены в угловых градусах.
Порядок выполнения работы
1. Установить угол β наклона штанги прибора на 50 .60°.
2. Отклонить шарик от положения равновесия на угол α0<= 5° с помощью вспомогательного предмета (карандаш, ручка).
3. Убрать вспомогательный предмет, представив возможность шарику свободно перемещаться.
4. Зафиксировать угол отклонения шарика от положения равновесия @n после 8-10 его полных колебаний.
5. Повторить измерения 3-4 раза и результаты занести в таблицу.
6. Найти среднее значение αn. Результаты внести в таблицу.
7. Найти среднюю ошибку измерения конечного угла отклонения. Результаты занести в таблицу.
в. Используя полученные данные, по формуле (97) определить величину коэффициента трения, результат записать в таблицу,
9. Увеличить угол наклона β штанги прибора на 5-10° и повторить измерения.
10. Сделать выводы.
Контрольные вопросы и задания
1. Что такое сила нормального давления? и. Запишите уравнение, связывающее силу трения с силой нормального давления.
3. Какие виде трения вы знаете?
4. Чем обусловлены силы трения?
5. В каких случаях силы трения играют положительную роль?
6. В каких случаях силы трения играют отрицательную роль?
7. Как можно изменить силу трения?