При первичном акте взаимодействия ионизирующей радиации с кристаллом в нем за время порядка 10-11с возникают электроны большой энергии, создающие в кристалле каскады вторичных электронов [16]. Эти электроны создают нестабильные возбуждения решетки, которые за 10-10~10-14с распадаются на cтабильные элементарные возбуждения - электронно-дырочные пары и экситоны.
В большинстве типичных кристаллофосфоров вероятность прямой рекомбинации электронов и дырок (переход зона - зона) мала. Мигрируя по решетке, они передают свою энергию центру свечения, создавая локализованные возбужденные состояния, которые разрушаются с испусканием квантов света люминесценции или фононов. Различают два основных механизма передачи энергии от основного вещества к центрам свечения: электронно-дырочный и экситонный.
Выделяют четыре разновидности электронно-дырочного механизма передачи энергии, представляемые следующими условными реакциями:
A+e++e- -> Ae++e- -> Ae+e- -> A* -> A+ hv (2.6)
A+e-+e+ -> Ae-+e+ -> Ae-e+ -> A* -> A+ hv; (2.7)
A+R+e++e- -> A+Re++e- -> A+Re+e- -> A+R* -> A*+R ->A+R+ hv; (2.8)
A+R+e-+e+ -> A+Re-+e+ -> A+Re-e+ -> A+R* -> A*+R ->A+R+ hv; (2.9)
Здесь А - центр люминесценции в основном состоянии, R - центр рекомбинации, e+ - дырка, e- - электрон, A* - центр люминесценции в возбужденном состоянии, hv - квант люминесценции. Механизмы (2.6), (2.7) осуществляются чаще, (2.8), (2.9) - реже.
Процесс экситонной передачи энергии может быть схематически представлен в виде следующей реакции
A+e0 -> Ae0 -> A* -> A+ hv. (2.10)
Здесь А и А* - центр люминесценции в основном и возбужденном состояниях, e0 - экситон, hv - квант излучаемого света.