Если перед линзой расположена диафрагма в виде узкой щели ширины D, то расчет для дифракционной картины Фраунгофера не представляет труда. В этом случае для распределения интенсивности в дифракционной картине получается выражение
Здесь q – угловая координата плоскости наблюдения. При наблюдении дифракции в геометрически сопряженной плоскости линейная координата r связана (в случае малых углов) с угловой координатой соотношением: r = F*q. (или r = F2*q для случая рисунка 2.2).
Распределение l(q) имеет главный максимум при q = 0 и эквидистантно расположенные нули при sinq = ml/D, где m – целое число. Значительная часть энергии света, прошедшего через щель, локализуется в главном дифракционном максимуме, угловая полуширина которого равна l/D. Интенсивность соседнего максимума составляет приблизительно 5 % от интенсивности в центре дифракционной картины. Этот случай представляет для дифракционной теории оптических инструментов чисто методический интерес, поскольку, как правило, входные апертуры имеют вид круглых отверстий. Расчет фраунгоферовой дифракции на круглом отверстии оказывается достаточно громоздким и приводит к бесселевым функциям первого порядка I1.
Распределение интенсивности света при дифракции Фраунгофера на круглом отверстии диаметра D выражается формулой
(2.3)
Рисунок 2.3.
Дифракция Фраунгофера на круглом отверстии.
При оценке разрешающей способности оптических инструментов важно знать размер центрального дифракционного максимума. Угловой радиус пятна Эйри выражается соотношением
(2.4)