Флуктуациями, появление самоорганизаций в открытых системах и период флуктуаций в макроскопические эффекты.

ФЛУКТУАЦИИ (от лат. fluctuatio — колебание), случайные отклонения физических величин от их средних значений; происходят у любых величин, зависящих от случайных факторов. В статистической физике флуктуации вызываются тепловым движением частиц системы. Флуктуации определяют теоретически возможный предел чувствительности приборов. Флуктуации давления проявляются, напр., в броуновском движении малых частиц под влиянием точно не скомпенсированных ударов молекул окружающей среды. Флуктуации характерны для любых случайных процессов.

Рассмотрим один абстрактный пример. Вспомним задачу о колебаниях маятника под действием периодической силы. Во всей области, когда частота этой силы не равна частоте собственных колебаний маятника (ω ≠ ω

o

), получается решение, отвечающее сумме двух колебаний — вынужденных и сопутству­ющих. В области ω≈ω0 характер решения принципиально меняется. Получается лишь одно линейно возрастающее по амплитуде колебание. Такое качественное изменение состояния объекта при некоторых критических значениях опре­деляющих это состояние параметров называется бифуркацией. Возможность появления бифуркации существенно связано с не­устойчивостью объекта при определенных условиях. Представим, что имеется среда, состоящая из большого числа связанных между собой маятников, собственные частоты которых лежат в некотором интервале ω0min≤ωo≤ω0max. Если с частотой ω

, существенно отличающейся от частот в интервале от ω0min до ω0max раскачивать один из маятников, т. е. вводить в среду энергию, то в конце концов в среде установятся колебания с частотой побуждающей силы ω(считаем, что есть трение и поэтому сопутствующие колебания затухнут). Колебательная энергия от источника более или менее равномерно распределится по всей среде. Пусть в этой среде находится хотя бы один маятник, для которого ω0 ≈ ω

. Тогда он начнет резонировать, появится резкое возрастание амплитуды и накопление энергии в районе этого маятника. Можно сказать, что возникнет флук­туация. В отличие от флуктуации плотности частиц в малом объеме жидкости или газа в установившемся состоянии рас­смотренная флуктуация не исчезнет, а будет возрастать со временем. Такая флуктуация уже не является микроскопической, а приводит к макроскопическому эффекту. Этот процесс называ­ется самоорганизацией.

Для начала процесса необходимо, чтобы в системе появились микрообразования, склонные к бифуркациям. Тогда подходящая микрофлуктуация может как бы запустить процесс нарастания неустойчивости и привести к макроскопическому эффекту.

Всякое разрастание флуктуации в среде до макроскопических размеров или самоорганизация неизбежно приводит к появлению порядка из беспорядка и является процессом, прямо проти­воположным тем, которые мы рассматривали выше. Таким процессам свойственно уменьшение энтропии. Получается, что второе начало термодинамики уже не справедливо. Попробуем разобраться.

Остановимся на некоторых простейших примерах появления самоорганизации в газе и жидкости. Известно, что если поместить газ или жидкость в сосуд, дно и «крыша» которого находятся при разных температурах, а стенки охлаждаются, то в среде возникают конвекционные потоки частиц (рис. 10.5). Не только появляется постоянно существующее (пока T1 Ф Т2) макроскопи­ческое движение, но и плотность частиц в конвекционных токах оказывается выше, чем вне их. Это и позволяет заметить такие токи; особенно хорошо они видны, если жидкость подкрасить. Такая конвекция наблюдается только тогда, когда сосуд до­статочно большой, т. е. существует некоторый критический раз­мер, ниже которого эффект не возникает. Имеется, стало быть, известная аналогия с цепной реакцией в атомной бомбе, где взрыв возникает только тогда, когда масса заряда становится выше некоторой критической.

Второй опыт заключается в появлении устойчивых вихрей в потоке жидкости (рис. 10.6). Эти вихри, легко наблюдаемые и макроскопические, можно видеть и на поверхности реки.

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.