Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты.
Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно δQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:
δQ/T=0 (1)
Из равенства нулю интеграла (1), взятого по замкнутому контуру, следует, что подынтегральное выражение δ
Q
/
T
есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние. Таким образом,
δQ/Т=dS.
(2)
Функция состояния, дифференциалом которой является δ
Q
/
T
, называется энтропией и обозначается S
.
Из формулы (1) следует, что для обратимых процессов изменение энтропии
∆
S=0.
(3)
В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:
∆
S>0.
(4)
Выражения (3) и (4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (3) и (4) можно представить в виде неравенства Клаузиуса
∆
S
≥0,
(5)
т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).
Если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (2), изменение энтропии
(6)
где подынтегральное выражение и пределы интегрирования определяются через величины, характеризующие исследуемый процесс. Формула (6) определяет энтропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропии.
Исходя из выражения (6), найдем изменение энтропии в процессах идеального газа
Так как то
или
(7)
т. е. изменение энтропии идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида процесса перехода 12.
Так как для адиабатического процесса δQ=0, то ∆S=0 и, следовательно, S=const, т. е. адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его часто называют изоэнтропийным процессом. Из формулы (7) следует, что при изотермическом процессе ( = Т2)
при изохорном процессе (V = V2)
Энтропия обладает свойством аддитивности: энтропия системы
равна сумме энтропии тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (температура и давление таким свойством не обладают).
Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное микросостояние (по определению, W≥1, т.е. термодинамическая вероятность не есть вероятность в математическом смысле (последняя ≤1!)).