Энтропия в открытых системах

Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты.

Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно δQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:

δQ/T=0 (1)

Из равенства нулю интеграла (1), взятого по замкнутому контуру, следует, что подынтегральное выражение δ

Q

/

T

есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние. Таким образом,

δQ/Т=dS.

(2)

Функция состояния, дифференциалом которой является δ

Q

/

T

, называется энтропией и обозначается S

.

Из формулы (1) следует, что для обратимых процессов изменение энтропии

S=0.

(3)

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

S>0.

(4)

Выражения (3) и (4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (3) и (4) можно представить в виде неравенства Клаузиуса

S

≥0,

(5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2, то, согласно (2), изменение энтропии

(6)

где подынтегральное выражение и пределы интегрирования определяются через вели­чины, характеризующие исследуемый процесс. Формула (6) определяет энтропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропии.

Исходя из выражения (6), найдем изменение энтропии в процессах идеального газа

Так как то

или

(7)

т. е. изменение энтропии идеального газа при переходе его из состояния 1 в со­стояние 2 не зависит от вида процесса перехода 12.

Так как для адиабатического процесса δQ=0, то ∆S=0 и, следовательно, S=const, т. е. адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его часто называют изоэнтропийным процессом. Из формулы (7) следует, что при изотермическом процессе ( = Т2)

при изохорном процессе (V = V2)

Энтропия обладает свойством аддитивности: энтропия системы

равна сумме энт­ропии тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (температура и давление таким свойством не обладают).

Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамичес­кая вероятность W состояния системы это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное микросостояние (по определению, W≥1, т.е. термодинамическая вероятность не есть вероятность в математическом смысле (последняя ≤1!)).

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.