Обработка импульсным излучением

При реализации линейного упрочнения обработка обычно ве­дется с перекрытием зон лазерного воздействия. В перекрытых участках происходит отпуск огнеупрочненного материала в ре­зультате действия последующего импульса. В результате в попе­речном сечении упрочненный слой представляет собой характер­ную «чешуйчатую» структуру. При двухкоординатном упрочнении дополнительное перекрытие несколько усложняет происходящие в зоне обработки процессы. В частности, это проявляется в узловых точках, где материал четы­режды подвергался облучению.

В фактуре поверхности также обнаруживается характерная «чешуйчатость». Центральную и основную часть каждого пятна за­нимает слаботравящаяся зона с твердостью до 13000 МПа. От­сутствие в этой зоне карбидов показывает, что температура на­грева здесь существенно превышала критическую точку, в резуль­тате чего все карбиды растворились в аустеннте. По окончании ла­зерного импульса при последующем быстром охлаждении за счет теплоотвода в массив материала в этой зоне произошла полная закалка с образованием мартеиситной структуры, обладающей высокой твердостью.

Значительная часть аустенита при этом сохранилась вследствие большого содержания и нем углерода и хрома, которые перешли в твердый раствор при нагреве до высоких температур. Однако этот остаточный аустенит испытал в процессе закалки фазовый наклеп, усиленный вследствие локального и импульсного характе­ра термического никла, поэтому обладает высокой твердостью.

Концентрично с первой расположена вторая зона, занимающая периферийную часть пятим и обладающая более сильной травимостыо и несколько меньшей твердостью (8000—10000 МПа). Невозможна также обработка сканирующим излучением с ампли­тудой сканирования. Тогда производительность обработки будет зависеть от величины и скорости перемещения заготовки: . Другие закономерности упрочнения сталей непрерывным излучением во многом подобны рассмотренным закономерностям обработки импульсным излучением. Параметры (ширина, площадь упрочненной зоны, глубина упрочнения), имеющие размерность, степень упрочнения, шероховатость обработанной поверх­ности зависят как от плотности мощности излучения и скорости обработки, так и от вида обрабатываемого материала. Важную роль при этом также играет вид поглощающего покрытия, нано­симого на поверхность для повышения эффективности обработки.На сегодняшний день разработано и используется большое многообразие поглощающих покрытий: фосфатные, хромовые, коллоидные растворы, графит, различные краски, оксиды металлов, силикаты и пр. Если для сравнительной оценки покрытий ис­пользовать критерий эффективности поглощения излучения kп= hu/ho , где hu ho, — глубина зоны термического влияния соот­ветственно с покрытием и без него, то ряд предпочтительности покрытий будет иметь следующий вид:

Таблица 3

Покрытие

С r

Cd

С

ZnO

Zn3(PO4)2

Si02 Al2O3

С

FeO4

0,6

2,0

3.0

4.5

5,1

6.5

6.7

Перейти на страницу: 1 2 3

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.