Эксплуатационные показатели материалов после лазерной поверхностной обработки

Лазерная поверхностная обработка вызывает улучшение мно­гих эксплуатационных характеристик облученных материалов. Спе­цифическая топография обработанной поверхности, которая харак­теризуется образованием «островков» разупрочнения, служащих своеобразными демпферами для возникающих структурных и тер­мических напряжений, а также «карманами» для удержания сма­зочного материала, позволяет существенно повысить износостой­кость материала вследствие значительного уменьшения коэффици­ента трения (порой до 2 раз).

У большей части конструкционных сталей и сплавов наблюда­лось увеличение износостойкости после лазерной обработки б 3—5 раз.

Такие механические свойства, как предел прочности σ, удар­ная вязкость КС, после лазерного облучения несколько снижают­ся, в то время как предел текучести σ0,2 практически остается без изменения. Однако с помощью дополнительного отпуска для сня­тия напряжений и σB, и σ0.2 могут быть увеличены в 1,3 раза по сравнению со стандартной термообработкой.

Лазерное упрочнение приводит к повышению теплостойкости (термостойкости) материала, например инструментальной стали Р6М5 па 70—80е С, что влияет на износостойкость режущих ин­струментов, изготовленных из этой стали. Насыщение матричного материала — алюминиевого сплава АЛ25 — железом, никелем, марганцем, медью приводит к увеличению его жаропрочности в 1,5—4 раза. Такое значительное улучшение жаропрочности пред­ставляет большой интерес для двигателестроения, где алюминие­вые сплавы работают в условиях высоких температур.

Лазерное облучение позволяет в широких пределах изменять напряженно-деформированное состояние материала. Изменяя ус­ловия облучения, можно получать остаточные напряжения разной величины.

При маркировке лазерным излучением достигается миниатюр­ность наносимого знака. Ширина образующей знака может не пре­вышать 10 мкм при размерах самого знака до нескольких десят­ков микрометров. Бесконтактность метода и отсутствие механичес­кого воздействия позволяют маркировать тонкостенные, хрупкие детали, узлы и изделия в сборе. Высокая точность и качестве зна­ков гарантируют надежность и стабильность их считывания фото­электронными устройствами. К достоинствам лазерной маркиров­ки относятся высокая производительность и возможность полной автоматизации процесса.

Одна из наиболее распространенных схем маркировки Реали­зует точечно-матричный метод нанесения знаков, при котором каждая матрица представляет собой прямоугольное поле с 63 воз­можными положениями зон лазерного воздействия (матрица «9X7»). При построчном сканировании излучения энергия подво­дится по программе к тем точкам матрицы, совокупность которых обеспечивает получение требуемого буквенно-цифрового знака. Зо­на элементарного воздействия в этом случае представляет собой. микроотверстие (лунку) диаметром 70—80 мкм. При частоте по­дачи импульсов 4 кГц с помощью матрицы «9X7» можно обеспе­чить производительность маркировки до 30 знаков в секунду.

Матрица «9x7» позволяет получить качественные знак к высо­той 3 мм и менее. С уменьшением высоты знака отдельные микро-лунки перекрываются с образованием микроборозд. Маркировка ведется излучением с модулированной добротностью при длитель­ности импульсов мкc и высокой пиковой мощности.

Маркировка может также выполняться по схеме, в которой ис­пользуется специальная маска, формирующая на обрабатываемой поверхности знак требуемой конфигурации. Достоинством этой схемы является то. что весь знак или даже вся требуемая инфор­мация из нескольких знаков, заложенная в маске, может быть на­несена за время действия одного импульса или серии из нecколь­ких импульсов. Это обусловливает высокую производительность процесса. Однако при этом ограничивается разнообразие носителей информации.

Большое распространение лазерная маркировка находит в электронной промышленности и приборостроении. Так, на миниа­тюрных конденсаторах с обкладкой площадью 2 мм2 с помощью излучении с модулировкой добротностью лазера па алюмопттриевом гранате (ЛИГ) наносятся фирменный знак и величина емкости.

На поверхности кремниевых и ферритовых элементов магнитных головок наносятся маркировочные знаки вы­сотой I мм при глубине знака 20 мкм. Нанесение семизначного числа на кремниевую пластину занимает 50 с, а одной цифры на ферритовую поверхность — 1с. Сетка и специальные знаки нано­сятся лазерным излучением на стек­лянные элементы приборов. Предвари­тельно на обрабатываемую поверх­ ность наносится слой графитового по­рошка. При плавлении стекла графит внедряется в расплав, з ре­зультате чего на стекле сохраняется хорошо различимый и надежно зафиксированный след.

Перейти на страницу: 1 2 3

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.