Электрические поля электретов

Электрические поля электрета с поверхностным зарядом

Электреты, в зависимости от характера внедренного заряда, наличия или отсутствия электродов, могут создавать электростатические поля как

внутри диэлектрика, так и в окружающем пространстве.

Если взять тонкую пленку полимерного диэлектрика, продольные размеры которой значительно превышают толщину, то ее можно считать «бесконечно протяженной». Именно для таких пленок в дальнейшем будут проводиться расчеты полей, токов релаксации и др. параметров электретов.

Зарядим поверхность пленки одним знаком заряда. Заряды захватятся поверхностными ловушками и будут удерживаться на них длительное

время (рис. 12).

Рис. 12. Моноэлектрет без электродов создает в пространстве электрическое поле

Такой электрет создает в пространстве однородное электрическое поле. В вакууме вне диэлектрика оно будет определяться выражением:

а внутри пленки:

где σ- поверхностная плотность заряда, ε - диэлектрическая проницаемость пленки, ε0- электрическая постоянная (8.85*Ф/м).

Рис.

13. Конфигурация для расчета электрических полей внутри и вне электрета: I - нижний напылённый электрод, 2 верхний электрод, 3 - диэлектрический зазор, 4 - внешняя закорачивающая цепь, 5 - поверхностный заряд

Для практических и научных целей наиболее интересен случай расчета полей, когда электрет с одним напыленным металлическим электродом помещен на некотором расстоянии от второго металлического электрода, причем оба электрода соединены проводником - коротко замкнуты (рис. 13). Такая конфигурация характерна для установок, измеряющих параметры электрета, а также для всех типов электроакустических преобразователей - микрофонов, телефонов и др. Она же позволяет рассмотреть как предельные случаи свободный электрет и электрет с плотно прилегающими или напыленными обеими электродами.

Рассмотрим сначала простейший случай, доступный даже школьникам старших классов, когда поверхность полимерной пленки однородно заряжена - поверхностная плотность заряда одинакова во всех точках поверхности и равна ст. На практике такой случай бывает при электризации в коронном разряде.

Введем обозначения: s - толщина пленки, ε - диэлектрическая проницаемость пленки, s1- толщина зазора между электретом и верхним электродом 2, ε1- диэлектрическая проницаемость вещества в зазоре, Е - напряженность электрического поля внутри пленки, D - электрическая индукция в пленке, Е1 - напряженность электрического поля в зазоре. D1, - индукция электрического поля в зазоре, V - разность потенциалов между нижним электродом и поверхностью электрета (электретная разность потенциалов или поверхностный потенциал электрета), V1 - разность потенциалов в зазоре между поверхностью электрета и верхним электродом.

Поля в зазоре и в пленке, очевидно, будут однородными. Поэтому для их определения достаточно записать два уравнения: условие для нормальной проекции вектора электрической индукции на границе раздела диэлектриков, на которой имеется слой избыточного заряда:

D1-D=σ (6)

и условие короткого замыкания электродов 1 и 2:

V1+V=0 (7)

Переходя в уравнениях (6) и (7) к напряженностям, получаем систему двух уравнений относительно неизвестных полей Е и Е1:

* ε1ε0Е1-εε0Е=σ (8)

* sE+s1E1=0 (9)

Решая систему, после несложных преобразований получим:

(10)

(11)

В предельном случае, когда электрод 2 удаляют на бесконечность от поверхности электрета, получается т.н. «свободный» электрет. Из 'формулы (11) видно, что поле в зазоре при этом исчезает, а в электрете становится равным:

(12)

Последнее выражение полностью совпадает с полем плоского бесконечно протяженного конденсатора с диэлектриком. В этом нет ничего удивительного, так как и в электрете и в конденсаторе имеются два противоположных по знаку параллельных слоя зарядов, одинаковых по величине. Их электрические поля по принципу суперпозиции складываются, внутри векторы напряженности полей слоев сонаправлены. а вне - противоположно направлены и компенсируют друг друга. Итак, свободный электрет бесконечной протяженности не создает в пространстве электрического поля. Однако для реальных электретов (как и плоских конденсаторов) этот вывод может быть использован с известной осторожностью, так как у них имеются края заряженной области, вблизи которых поле неоднородно и силовые линии выходят наружу. Кроме того, при зарядке могут возникнуть неоднородности в распределении поверхностного заряда по площади электрета, что также приведет к выходу силовых линий из электрета в окружающее пространство.

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.