Электрические поля электрета с пространственным зарядом

Теперь рассмотрим более сложный случай, когда в электрете имеется объемный заряд с плотностью ρ(х) (см. рис 8), а на поверхности пленки (при х=s) поверхностный заряд отсутствует (σ=0). Поле внутри электрета теперь не будет однородным. В этом легко убедиться, воспользовавшись уравнением Максвелла для вектора индукции электростатического поля:

divD=ρ.(13)

В нашем случае ρ зависит только от одной координаты (х), от одной координаты будут зависеть напряженность и индукция электрического поля. Кроме того, векторы направлены вдоль оси ОХ, что позволяет рассматривать только одну их проекцию на эту ось, модуль которой равен модулю соответствующего вектора. Тогда в уравнении (13) получим:

или, с учетом связи векторов D и Е:

(14)

То, что производная Е(х) отлична от нуля, доказывает зависимость от х вектора Е, т.е.неоднородность поля внутри электрета. Аналогичное уравнение можно записать для зазора, где нет пространственного заряда:

(15)

Поле Е,. очевидно, будет однородным. Система дифференциальных уравнений (14)-(15), дополненная двумя граничными условиями:

D1-D=0 или ε1ε0Е1-εε0Е=0 (16)

V+V1=0 или (17)

позволяет решить задачу - найти электрические поля в электрете и зазоре.

Интегрируя по х (14) и (15), получаем общее решение:

(18) E1=C2 (19)

в которое входят две произвольные постоянные - С/ и С,. Их легко найти, подставив (18) и (19) в граничные условия (16) и (17), в результате получается система двух алгебраических уравнений с двумя неизвестными:

Решая систему, находим произвольные постоянные, а затем и выражения для электрических полей в зазоре и пленке:

(20)

(21)

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.