Полученные выражения носят общий характер, из них можно получить конкретные выражения для полей, если подставить выражение для объемной плотности захваченного заряда ρ(х).
Электрет с поверхностным зарядом
Рассмотрим, например, случай, когда заряд распределен по поверхности с поверхностной плотностью ст. Найдем выражение для
объемной плотности заряда.
Рассмотрим рис. 14
|
Рис. 14
Выделим на пленке участок площадью S и объемом V =Ss. Полный заряд выделенного участка Q=σS. С другой стороны, этот же заряд можно вычислить через объемную плотность заряда:
откуда получаем связь σ и р(х):
(22)
Плотность заряда ρ(х)в пленке всюду равна 0, и только на самой поверхности (при х=s) обращается в бесконечность, так как весь заряд сосредоточен в слое бесконечно малого приповерхностного объема. В математике известна функция, обладающая такими свойствами - дельта-функция Дирака δ(х). Она равна нулю при всех значениях аргумента, кроме х = 0, при котором обращается в бесконечность. Логично поэтому представить объемную плотность заряда ρ (х) в виде произведения некоторой постоянной а на дельта-функцию δ(х-s), принимающую бесконечное значение при х = s:
ρ(x)=aδ(x-s) (23)
Дельта-функция обладает следующим свойством:
(24)
где f(x)- произвольная функция.
Бесконечные пределы можно заменить на конечные, включающие точку «скачка» дельта-функции, поскольку вне этой области подынтегральное выражение равно нулю. В нашем случае достаточно ограничиться пределами от 0 до s. Интегрируя (23) в этих пределах, по свойству (24) получаем:
(25)
Сравнивая с (22), приходим к выводу, что постоянная а равна δ. Таким образом, выражение для ρ(х) приобретает вид:
ρ(х)=σδ(x-s) (26)
Вычислим поля Е и E1, подставив в общие формулы (20) и (21) выражение (26):
Откуда после, несложных преобразований, получаются уже известные нам формулы (10) и (11).