Первые опыты по лазерному охлаждению были проведены с ионами в ионных ловушках, ионы фиксировались в пространстве с помощью электрического поля и/или магнитного поля. Эти ионы освещались лазерным пучком, и благодаря неупругому взаимодействию с фотонами теряли энергию после каждого соударения. Этот эффект используется для достижения сверхнизких температур. В дальнейшем, в процессе совершенствования лазеров, нашли и другие методы, такие как антистоксово охлаждение твёрдых тел -- наиболее практичный метод лазерного охлаждения на сегодня. Этот метод основан на том, что возбуждается атом не с основного электронного состояния, а с колебательных уровней этого состояния (с чуть большей энергией чем энергия основного состояния) на колебательные уровни возбуждённого состояния (с энергией чуть меньше чем энергия этого возбуждённого состояния). Далее атом безизлучательным образом переходит на возбуждённый уровень (поглощая фононы) и испускает фотон при переходи с возбуждённого электронного уровня на основной (этот фотон обладает большей энергией чем фотон накачки). Атом поглощает фонон и цикл повторяется. Уже существуют системы, способные охлаждать кристалл от азотных до гелиевых температур. Этот метод охлаждения идеален для космических аппаратов, где нет возможности ставить традиционную систему охлаждения.