Появление больших подземных детекторов открыло новый этап в физике нейтрино. Такие детекторы, способные регистрировать нейтрино, рожденные в атмосфере, на Солнце и звездах, позволяют исследовать свойства этих частиц с очень высокой точностью. Недавние результаты, полученные на детекторе Супер-Камиокандэ (SK) в Японии, дающие богатую информацию для физики элементарных частиц и астрофизики, уже представили доказательство того, что нейтрино обладают ненулевой массой.
Детекторы сооружают на глубине от 500 до 2 000 м, чтобы заэкранировать от космических мюонов (частицы, подобные электронам, но гораздо более тяжелые, со временем жизни 2·10-6 с) и других вторичных частиц. SK – самый большой из современных подземных детекторов – имеет резервуар с высотой 42 м и диаметром 40 м, заполненный 50 кт воды. Детектор состоит из внутренней и наружной частей. Во внутренней части находятся 32 кт воды, объем которой просматривается 11 146 фотоумножителями, каждый с диаметром 50 см. Светочувствительная площадь фотоумножителя составляет 40% его внутренней поверхности.
Работа детектора основана на том, что заряженная частица, движущаяся в среде со скоростью, превышающей скорость света в этой среде, испускает свет (черенковское свечение); в воде это синее свечение, направленное под углом »42o к скорости. Каждая заряженная частица, приходящая на детектор извне, генерирует черенковский сигнал в наружной части детектора, поэтому их нетрудно отличить от нейтрино, которые родились в самом детекторе. Нейтрино не имеют заряда, зато при взаимодействии с веществом рождают мюоны и электроны с их черенковским свечением, причем по виду кольца можно отличить столкновение nm (с образованием мюонов) от nе (с образованием электронов).
SK, который начал набирать статистику с апреля 1996 г., в 1998 г. открыл осцилляции атмосферных нейтрино. Эти нейтрино, по определению, рождаются при прохождении космических лучей через атмосферу. Первичная компонента космических лучей (протоны, ядра гелия) образует в атмосфере, главным образом, пионы – короткоживущие элементарные частицы, участвующие в сильных взаимодействиях. При распаде пиона образуются два nm и один nе, поэтому отношение nm и nе можно предсказать точно, хотя абсолютные величины потоков измеряются не очень точно. Однако отношение nm/nе, измеренное на SK, оказалось на 35% меньше ожидаемого. Такие же результаты уже получались около десяти лет назад на малых детекторах.
Богатая статистика атмосферных нейтрино на SK позволила детально изучить зависимость потоков nm , nе от трассы между местом образования и детектором, связанной с зенитным углом. Угловое распределение электроно- и мюоноподобных событий измерялось в продолжение 1 144 дней детекторного времени. Это распределение должно быть симметрично относительно верха/низа, так как вследствие изотропности прихода космических лучей из Вселенной потоки нейтрино, направленные вверх и вниз, одинаковы. Распределение электроноподобных событий отвечало ожиданиям, а вот число m-подобных на больших зенитных углах оказалось вдвое меньше ожидаемого. Большие углы соответствуют большим расстояниям прохождения нейтрино через Землю (до 13 тыс. км). Вероятность нейтринной осцилляции, естественно, возрастает с указанным расстоянием, чем и обусловлена асимметрия m-подобных событий, которая служит косвенным доказательством, что нейтрино имеют конечную массу.
Нейтринные осцилляции можно наблюдать и другим методом. При взаимодействии жестких nm , приходящих на детектор снизу, с окружающей породой образуются мюоны, поток которых, направленный вверх, проходит через детектор. Правда, туда же приходит и множество космических мюонов, но те мононаправлены вниз, и поэтому их нетрудно отфильтровать. Детектор MACRO в тоннеле Гран Сассо (Италия) избирательно чувствителен к мюонам, направленным вверх. В данных SK и MACRO обнаруживается дефицит мюонов "вверх" вблизи вертикального направления, тогда как наблюдения горизонтальных потоков согласуются с ожиданиями. Еще одно доказательство получено на Soudan-2, детекторе-калориметре с железным заполнением, который отличается высоким разрешением треков и хорошей идентификацией частиц. Хотя по сравнению с SK время экспозиции Soudan-2 к настоящему времени меньше 10%, на этом детекторе уже зафиксирована асимметрия вверх/вниз у событий nm при симметричном распределении nе.