, .
Здесь - ядерный потенциал, ответственный за дифракцию нейтронов, - электрический, g - вектор обратной решетки, характеризующий выбранную систему плоскостей; , - амплитуды ядерного и электрического потенциалов соответственно. Величина характеризует смещение максимумов ядерного потенциала относительно максимумов электрического. В результате нейтроны в состояниях и оказываются в сильных ( В/см) межплоскостных электрических полях противоположного знака:
.
Наличия таких внутрикристаллических полей еще недостаточно для повышения точности измерения ЭДМ. Важное свойство приведенное на схеме дифракции по Лауэ - возможность увеличить время пребывания нейтрона в электрическом поле кристалла путем перехода к углам Брэгга , близким к . Причина в том, что при дифракции по Лауэ нейтрон, имея полную скорость v, вдоль кристаллографических плоскостей в среднем движется со скоростью , которая может быть существенно уменьшена по сравнению с v при выборе угла дифракции вблизи . Поскольку при этом , время растет по мере приближения к . Максимально близкий к угол Брэгга определит максимальную чувствительность метода. Дальнейшее его увеличение, в принципе может оказаться невозможным.
|
Рис 7 Движение нейтронов вдоль кристаллографических плоскостей при дифракции. Кружками изображены области максимальной концентрации нейтронов в состояниях и , здесь частицы двигаются в электрических полях разного знака. k - волновые векторы нейтрона, связанные с его скоростью k=mv/h; так как нейтроны в состояниях и оказываются в разных потенциалах, их кинетические энергии, а значит, и k, отличаются. На выходе из кристалла показаны волновые векторы двух продифрагировавших пучков, прямого и отраженного. Их геометрическое расположение определяет условие наблюдения брэгговских пиков дифракции, задающее угол Брэгга. |