Управляемые оптические транспаранты.Рассмотрим пример достижения научных исследований в процессе создания жидкокристаллических экранов, отображения информации, в частности жидкокристаллических экранов телевизоров. Известно, что массовое создание больших плоских экранов на жидких кристаллах сталкивается с трудностями не принципиального, а чисто технологического характера. Хотя принципиально возможность создания таких экранов продемонстрирована, однако а связи со сложностью их производства при современной технологии их стоимость оказывается очень высокой. Поэтому возникла идея создания проекционных устройств на жидких кристаллах, в которых изображение, полученное на жидкокристаллическом экране малого размера могло бы быть спроектировано в увеличенном виде на обычный экран, подобно тому, как это происходит в кинотеатре с кадрами кинопленки. Оказалось, что такие устройства могут быть реализованы на жидких кристаллах, если использовать сэндвичевые структуры, в которые наряду со слоем жидкого кристалла входит слой фотополупроводника. Причем запись изображения в жидком кристалле, осуществляемая с помощью фотополупроводника, производится лучом света. О подобном проекторе уже рассказывалось в главе VII. Теперь же познакомимся с физическими явлениями, положенными в основу его работы.
Принцип записи изображения очень прост. В отсутствие подсветки фотополупроводника его проводимость очень мала, поэтому практически вся разность потенциалов, поданная на электроды оптической ячейки, в которую еще дополнительно введен слой фотополупроводника, падает на этом слое фотополупроводника. При этом состояние жидкокристаллического слоя соответствует отсутствию напряжения на нем. При подсветке фотополупроводника его проводимость резко возрастает, так как свет создает в нем дополнительные носители тока (свободные электроны и дырки). В результате происходит перераспределение электрических напряжений в ячейке — теперь практически все напряжение падает на жидкокристаллическом слое, и состояние слоя, в частности, его оптические характеристики, изменяются соответственно величине поданного напряжения. Таким образом, изменяются оптические характеристики жидкокристаллического слоя в результате действия света. Ясно, что при этом в принципе может быть использован любой электрооптический эффект из описанных выше. Практически, конечно, выбор электрооптического эффекта в таком сэндвичевом устройстве, называемом электрооптическим транспарантом, определяется наряду с требуемыми оптическими характеристиками и чисто технологическими причинами.
Важно, что в описываемом транспаранте изменение оптических характеристик жидкокристаллического слоя происходит локально — в точке засветки фотополупроводника. Поэтому такие транспаранты обладают очень высокой разрешающей способностью. Так, объем информации, содержащейся на телевизионном экране, может быть записан на транспаранте размерами менее 1х1 см2.
Описанный способ записи изображения, помимо всего прочего, обладает большими достоинствами, так как он делает ненужной сложную систему коммутации, т. е. систему подвода электрических сигналов, которая применяется в матричных экранах на жидких кристаллах.
Пространственно-временные модуляторы света.
Управляемые оптические транспаранты могут быть использованы не только как элементы проекционного устройства, но и выполнять значительное число функций, связанных с преобразованием, хранением и обработкой оптических сигналов. В связи с тенденциями развития методов передачи и обработки информации с использованием оптических каналов связи, позволяющих увеличить быстродействие устройств и объем передаваемой информации, управляемые оптические транспаранты на жидких кристаллах представляют значительный интерес и с этой точки зрения. В этом случае их еще принято называть пространственно-временными модуляторами света (ПВМС), или световыми клапанами. Перспективы и масштабы применения ПВМС в устройствах обработки оптической информации определяются тем, насколько сегодняшние характеристики оптических транспарантов могут быть улучшены в сторону достижения максимальной чувствительности к управляющему излучению, повышения быстродействия и пространственного разрешения световых сигналов, а также диапазона длин волн излучения, в котором надежно работают эти устройства. Как уже отмечалось, одна из основных проблем — это проблема быстродействия жидкокристаллических элементов, однако уже достигнутые характеристики модуляторов света позволяют совершенно определенно утверждать, что они займут значительное место в системах обработки оптической информации. Ниже рассказывается о ряде возможных применений модуляторов света.