Коэффициент теплопроводности жидкостей описывается уравнением :
где Ср – теплоемкость жидкости при постоянном давлении, r - плотность жидкости, m - ее молекулярная масса. Коэффициент А пропорционален скорости распространения упругих волн в жидкости, не зависит от природы жидкости, но при этом А*Ср = const. Механизм распространения теплоты в капельных жидкостях можно представить как перенос энергии путем нестройных упругих колебаний. Коэффициет теплопроводности жидкостей лежит в пределах от 0,07 до 0,7 Вт/(м*К). Но жидкости, как правило, не используются в теплозащитной технике.
Коэффициент теплопроводности твердых тел. Определяется опытным путем или на основе эмпирических формул. В металлах основным передатчиком являются свободные электроны, которые можно уподобить идеальному одноатомному газу. Передача теплоты при помощи колебательных движений или в виде упругих звуковых волн не исключается, но ее доля незначительна по сравнению с переносом энергии электронным газом. При наличии разного рода примесей коэффициент теплопроводности металлов резко убывает. Это можно объяснить увеличением структурных неоднородностей, которое приводит к рассеиванию электронов. Так, например, для чистой меди l=396 Вт/(м*К), для той же меди со следами мышьяка l=142 Вт/(м*К). Как видно металлы не могут быть хорошими теплоизоляторами от обычной теплопроводности, хотя они хорошо справляются с отражением ИК- и других излучений в лучистом переносе энергии.
В диэлектриках с повышением температуры коэффициент теплопроводности увеличивается. Как правило, для материалов с большей плотностью коэффициент теплопроводности имеет более высокое значение.
Теплопроводность зависит от структуры материала, его пористости и влажности. Зависимость теплопроводности материала от объемной влажности может быть выражена эмпирической формулой :
l = lс.м + Dlw,
где lс.м - коэффициент теплопроводности материала в воздушно-сухом состоянии; Dl - приращение коэффициента теплопроводности на каждый процент увеличения объемной влажности; w – объемная влажность, %. Величину Dl органических материалов при положительных температурах принимают равной 3.5*10-3, а при отрицательных температурах 4*10-3 Вт/(м*К); неорганических материалов – соответственно 2,3*10-3 и 3,5*10-3 Вт/(м*К).
Теплоизоляционные материалы должны отвечать следующим нормам : они должны быть температуро- и морозостойкими, негорючими или обладать возможно меньшей горючестью, химически инертными. Они недолжны иметь запаха или воспринимать запахи, обладать достаточной механической прочностью, виброустойчивыми, должны легко обрабатываться и резаться, должны удовлетворять определенным экономическим показателям.
Материалов, обладающих в равной и полной степени всеми перечисленными свойствами, пока не существует. Из всех существующих теплоизоляторов можно выделить высокоэффективные материалы (с l =0,045 Вт/(м*К) в сухом состоянии и с объемной массой до 100 кг/м3) :
1) Органические естественные материалы. К ним относятся различные породы растительных волосков или растительного пуха, находившие ранее применение, но теперь редко используемые.
2) Органические исскуственные материалы. Очень перспективными материалами этой подгруппы являются пенопласты, получаемые путем вспенивания синтетических смол. Пенопласты имеют мелкие замкнутые поры и этим отличаются от поропластов – тоже вспененных пластмасс, но имеющих соединяющиеся поры и поэтому не используемые в качестве теплоизоляционных материалов. В зависимости от рецептуры и характера технологического процесса изготовления пенопласты могут быть жесткими, полужесткими и эластичными с порами необходимого размера; изделиям могут быть приданы желаемые свойства (например, уменьшена горючесть).