Исследования расширения тел при нагревании

В XVIII в. начинаются систематические исследования расшире­ния тел при нагревании. Помимо чисто научного интереса явление расширения тел при нагревании имело практическое значение. Изучение расширения тел было необходимо для совершенствования термометра, основанного на явлении расширения жидкостей. Усо­вершенствование термометров, а также других приборов требовало исследования процесса расширения твердых тел. Так, например, уже в XVIII в. для конструкторов точных часов, необходимых в мореплавании, учет расширения твердых тел в результате нагревания стал технической необходимостью. Известно, что английский конструктор Гаррисон, получивший премию от парламента за свои хронометры, добился хороших результатов после того, как учел законы теплового расширения металлов, из которых изготовлялись детали часов. Первые хорошие количественные результаты по измерению теплового рас­ширения твердых тел получили Лавуазье и Лаплас начале 80-х годов. Они указывали на важность измерения коэффициентов теплового расширения тел:

«Это свойство, присущее телам, занимать различный объем в зависимости от температуры, до которой они дове­рены, является препятствием, с которым приходится встречать­ся на каждом шагу в физике и в инженерной практике каж­дый раз, по крайней мере, когда хотят достигнуть высокой степени точности».

Особое значение для развития теории теплоты имели исследования теплового расширения и вооб­ще тепловых свойств газов. Первый газовый закон был установлен англичанином Бойлем и францу­зом Мариоттом во второй половине XVII в., назы­вающийся с тех пор законом Бойля — Мариотта.

Интересно исследование свойств газов, проведенное французом Амонтоном, которое было опубликовано в 1703 г. Амонтон занимал­ся конструированием термометра еще до появления термометра Фаренгейта. Ему пришла мысль использовать для измерения темпе­ратуры изменение упругости воздуха при нагревании. Он сконструи­ровал воздушный термометр, который состоял из U-образной стек­лянной трубки, короткий конец которой заканчивался большим стеклянным шаром. Трубка и часть шара заполнялись ртутью. При нагревании шара давление воздуха в нем изменялось, и ртуть в трубке поднималась. Помещая шар в тающий лед, а затем в кипящую воду, Амонтон установил, что давление при этом возрастает примерно в три раза. После работ Амонтона вскоре бы­ли изобретены практически удобные термометры Фаренгейта, Рео­мюра и Цельсия. Вопрос о газовом термометре потерял свою значи­мость. Однако вскоре было замечено, что показания термометров, наполненных ртутью и спиртом, не полностью совпадают. Значит, за основной следовало принять термометр с определенной жид­костью, считая, что ее расширение строго пропорционально повы­шению температуры. За такую жидкость Рис. 5 была принята ртуть, и ртутный термометр стали рассматривать как эталонный. Постепен­но, однако, выясняется, что, вообще говоря, тела расширяются не совсем равномерно с ростом температуры. В начале XIX в. англий­ский химик Дэви показал, что термометры, в которых используются различные жидкости, показывают разную температуру в промежутке от 0 до 100°С.

В конце XVIII в. были открыты кислород, азот, а затем и другие газы и выяснено, что существует множество газообразных веществ различной природы. При установлении физических и химических свойств открытых газов исследовали и их тепловое расширение. Исследованиями теплового расширения газа занимались француз­ский физик Жозеф Луи Гей-Люссак (1778—1850) и английский хи­мик Джон Дальтон (1766—1844). В 1802 г. независимо друг от друга они открыли закон, согласно которому все газы расширяются при нагревании одинаково и имеют один и тот же постоянный коэффи-циент расширения, равный—.0,00375 град -1. Естественно поэтому было предположить, что за эталон следует взять газовый термометр и считать, что газы расширяются пропорционально увеличению тем-пературы. Однако в дальнейшем было выяснено, что этот закон справедлив только для очень разреженных и сильно нагретых газов (так называемых идеальных газов) и соответственно эталонным считать термометр с идеальным газом. Только развитие термодинамики позволило установить шкалу температур, не зависящую от избранного тела — абсолютную термодинамическую шкалу.

Перейти на страницу: 1 2

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.