Рис. 1. Зависимость светового выхода
кристалла NaJ (T1) от энергии частиц.
![]() |
При очень больших величинах возможны значительные нарушения кристаллической решетки сцинтиллятора, которые приводят к возникновению локальных центров тушения. Это обстоятельство может привести к относительному уменьшению светового выхода. Действительно, экспериментальные факты свидетельствуют о том, что для тяжелых частиц выход нелинеен, а линейная зависимость начинает проявляться только с энергии в несколько миллионов электронвольт. На рис. 1 приведены кривые зависимости c от Е: кривая 1 для электронов, кривая 2 для a частиц.
Кроме указанных щелочно-галоидных сцинтилляторов иногда используются другие неорганические кристаллы: ZnS (Tl), CsJ (Tl), CdS (Ag), CaWO4, CdWO4 и др.
Органические кристаллические сцинтилляторы.
Молекулярные силы связи в органических кристаллах малы по сравнению с силами, действующими в неорганических кристаллах. Поэтому взаимодействующие молекулы практически не возмущают энергетические электронные уровни друг у друга и процесс люминесценции органического кристалла является процессом, характерным для отдельных молекул. В основном электронном состоянии молекула имеет несколько колебательных уровней. Под воздействием регистрируемого излучения молекула переходит в возбужденное электронное состояние, которому также соответствует несколько колебательных уровней. Возможны также ионизация и диссоциация молекул. В результате рекомбинации ионизованной молекулы, она, как правило, образуется в возбужденном состоянии. Первоначально возбужденная молекула может находиться на высоких уровнях возбуждения и через короткое время (~10-11 сек) испускает фотон высокой энергии. Этот фотон поглощается другой молекулой, причем часть энергии возбуждения этой молекулы может быть израсходована на тепловое движение и испущенный впоследствии фотон будет обладать уже меньшей энергией по сравнению с предыдущим. После нескольких циклов испускания и поглощения образуются молекулы, находящиеся на первом возбужденном уровне; они испускают фотоны, энергия которых может оказаться уже недостаточной для возбуждения других молекул и, таким образом, кристалл будет прозрачным для возникающего излучения.
![]() |
Рис. 2. Зависимость светового выхода
антрацена от энергии для различных частиц.
Благодаря тому, что большая часть энергии возбуждения расходуется на тепловое движение, световой выход (конверсионная эффективность) кристалла сравнительно невелик и составляет несколько процентов.
Для регистрации ядерных излучений наибольшее распространение получили следующие органические кристаллы: антрацен, стильбен, нафталин. Антрацен обладает достаточно большим световым выходом (~4%) и малым временем высвечивания (3•10-8 сек). Но при регистрации тяжелых заряженных частиц линейная зависимость интенсивности сцинтилляции наблюдается лишь при довольно больших энергиях частиц.