Однако и это совершенно правильное объяснение представляется весьма поразительным. Ведь в течении большого промежутка времени обе системы движутся друг относительно друга прямолинейно и равномерно. Поэтому, с точки зрения системы , часы А, находящиеся вS, отстают (но не уходят вперед) в полном соответствии с формулой (v). И лишь за малый промежуток времени, когда в системе действуют инерциальные силы, часы А быстро уходят вперед на промежуток времени, вдвое больший, чем . При этом, чем большее ускорение испытывает система , тем быстрее бежит время на часах А. Наглядно суть полученных выводов может быть разъяснена на плоскости Минковского. Отрезок 0b на этом рисунке изображает покоящиеся часы А, ломаная линия 0ab - движущиеся часы В. В точке a действуют силы, ускоряющие систему часов В и изменяющие ее скорость на обратную. Точки, расставленные на оси 0b, разделяют единичные промежутки времени в неподвижной системеS, связанной с часами А.
Точки на ломаной 0ab отмечают равные единичные промежутки времени, измеряемые часами В, находящимися в системе. Из рисунка видно, что число единичных отрезков, укладывающихся на линии 0b, больше чем число таких же, но относящихся к системе, отрезков, укладывающихся на ломаной 0ab. Следовательно, часы В отстают от часов А. Согласно рисунку "неподвижные" часы А также отстают от часов В вплоть до того момента, изображаемого точкой a. Одновременно с этим моментом является момент a1, однако до тех пор, пока часы В еще движутся со скоростью n. Но через малый промежуток времени, требуемый для замедления часов В и сообщения им скорости -n на часах В практически останется тот же момент a, но одновременным с ним моментом в системеS станет момент a2. То есть, почти мгновенно время системы S как бы перескочит на конечный интервал a1a2.
Этот перескок времени не является, однако, реально наблюдаемым эффектом. Действительно, если из системы S регулярно, через единичные интервалы посылать в систему световые сигналы, то они совершенно регулярно будут приниматься системой S, сперва более редко, а затем, после изменения скорости на обратную, более часто. Никакого разрыва в показаниях часов А в системенаблюдаться не будет. Таким образом, "парадокс часов" также является лишь непривычным для обычных представлений о пространстве и времени следствием псевдоевклидовой геометрии четырехмерного пространственно-временного многообразия.