На рис. 20 изображены две собирающие линзы. Вторая «лучше» собирает лучи, ближе их сводит, она «сильнее». Оптической силой линзы называется величина, обратная фокусному расстоянию:
. (6)
Выражается оптическая сила линзы в диоптриях (дптр).
Рис.20.
Одна диоптрия – оптическая сила такой линзы, фокусное расстояние которой 1м.
У собирающих линз положительная оптическая сила, у рассеивающих – отрицательная.
Построение изображения предмета в собирающей линзе сводится к построению его крайних точек. В качестве предмета выберем стрелку АВ (рис. 21). Изображение точки А построено, как на рис. 17, точка В1 может быть найдена, как на рис 19. Введем обозначение (аналогичные введенным при рассмотрении зеркал): расстояние от предмета до линзы |BO| = d; расстояние от предмета до линзы изображения |BO1| = f, фокусное расстояние |OF| = F. Из подобия треугольников А1В1О и АВО (по равным острым – вертикальным – углам прямоугольные треугольники подобна) |A1B1|/|AB = f/d. ИЗ подобия треугольников A1B1F и DOF (по тому же признаку подобия) A1B1|/|AB = (f – F)/F. Следовательно,
или fF = df – dF.
Разделив уравнение почленно на dFf и перенеся отрицательный член в другую сторону равенства, получим
. (7)
Мы вывели формулу линзы, аналогичную формуле зеркала.
В случае рассеивающей линзы (рис. 22) «работает» ближний мнимы фокус. Обратите внимание на то, сто точка А1 является тоской пересечения продолжения преломленных лучей, а не точкой пересечения преломленного луча FD и падающего луча AO.
Рис.21.
Рис.22.
Для доказательства рассмотрите луч, падающий из точки А по направлению на дальний фокус. После двойного преломления он выйдет из линзы параллельно главной оптической оси, так что его продолжение пройдет через точку А1. Изображение точки В может быть построено аналогично рис. 19. ИЗ подобия соответствующих треугольников |A1B1|/|AB| = f/d; |A1B1|/|AB| = (F – f)/F; fF = dF – – df или
.
Эту формулу рассеивающей линзы можно получить из (8). Для этого условимся считать положительными величины d (от предмета до линзы), f (от линзы до изображения) и F (от линзы до фокуса), если они направлены в сторону падающих лучей. Тогда в формуле (8) для собирающей линзы все члены положительны, для рассеивающей – расстояние от предмета до линзы положительно, d > 0, а расстояния от линзы до изображения и до фокуса отрицательны (f < 0, F < 0). Если перейти к абсолютным значениям расстояний, то получим
или
– в соответствии с выделенной формулой.