Существование двойника электрона – позитрона – было предсказано теоретически английским ученым физиком П. Дираком в 1931г. Одновременно Дирак предсказал, что при встрече позитрона с электроном обе частицы должны исчезнуть, породив фотоны большей энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона достаточно большой энергии (его масса должна быть больше суммы масс покоя рождающихся частиц) с ядром.
Спустя два года позитрон был обнаружен с помощью камеры Вильсона, помещенной в магнитное поле. Направление искривления трека частицы указывало знак ее заряда. По радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Оно оказалось по модулю таким же, как и у электрона.
Аннигиляция одних частиц и появление других при реакциях между элементарными частицами является именно превращениями, а не просто возникновением новой комбинации составных частей старых частиц. Особенно наглядно обнаруживается это при аннигиляции пары электрон – позитрон. Обе частицы обладают определенной массой в состоянии покоя и электрическими зарядами. Фотоны же, которые при этом рождаются, не имеют зарядов и не обладают массой покоя, так как не могут существовать в состоянии покоя.
В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться невечным. Впоследствии двойники – античастицы – были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция. Обе частицы исчезают, превращаясь в кванты излучения или другие частицы.
Сейчас хорошо известно, что рождение пар частица – античастица и их аннигиляция не составляют монополии электронов и позитронов.
Атомы, ядра которых состоят из антинуклонов, а оболочка – из позитронов, образуют антивещество. В 1969г. в СССР был впервые получен антигелий.
При аннигиляции с веществом энергия покоя превращается в кинетическую энергию образующихся g-квантов.
Энергия покоя – самый грандиозный и концентрированный резервуар во Вселенной. И только при аннигиляции она полностью высвобождается, превращаясь в другие виды энергии. Поэтому антивещество – самый совершенный источник энергии, самое калорийное «горючее».
Открытие нейтрона, положившее начало новой науке – нейтронной физике, связано с именем английского ученого Джеймса Чедвика. Родился он в Манчестере в 1891г, образование получил у Резерфорда и под его влиянием посвятил свою жизнь разработке проблем физики атомного ядра.
Рассеяние α-частиц на ядре
Ученный измерял заряды ядер, эта работа явилась экспериментальным подтверждением ядерной модели строения атома, предложенной Э. Резерфордом. В 1911г Чедвик установил, что диаметр атомного ядра равен примерно 10-10м.
Открытию нейтрона предшествовали наблюдения немецких физиков В. Боте и Г. Беккера в 1930г над таинственным, необъяснимо жестким, глубоко проникающим излучением, возникающим при бомбардировке бериллия, лития и бора α-частицами. Попытки истолковать это излучение как мощный поток гамма-лучей приводили к ряду противоречий. Подсчет баланса энергии, расходуемой и получаемой при реакции, давал странные результаты, словно в этом явлении происходило нарушение закона сохранения энергии. Эти «бериллиевые лучи», проникающие сквозь свинец и бетон, привлекли внимание французских физиков Ирен и Фредерика Жолио-Кюри. В Парижском институте радия в 1931г они поставили эксперименты с «бериллиевыми лучами» и обнаружили при «просвечивании» ими парафина еще одно неожиданное явление. Это водородосодержащее вещество под действием странных лучей начинало излучать ядра водорода – протоны. Ирен и Фредерик Жолио-Кюри установили, что при введении парафина в ионизационную камеру, при помощи которой производилось измерение энергии излучения, наблюдалось увеличение ионизационного тока почти в два раза. Они объяснили это как результат дополнительной ионизации, возникающей благодаря появлению в камере протонов большей энергии. Измерили пробег протонов в воздухе. Он оказался равным 0,26м, это соответствовало скорости протонов 3×107м/с. Об этих опытах 18 января 1932г было доложено на заседании Парижской Академии наук.