Первые модели элементарных частиц

Нет таких чувствительных весов, чтобы заметить столь ничтожное изменение массы, составляющее около пяти стомиллионных процента веса вещества.

Иначе обстоит дело при ядерных реакциях. В этом случае реагирующие частицы обладают чрезвычайно малой массой, а количество выделяющейся энергии огромно. Так, при распаде ядер урана дефект массы составляет около 0,05%, т.е. при освобождении ядерной энергии в цепной реакции масса уменьшается на 1/2000 долю первоначальной. При реакции синтеза – слияния ядер водорода в ядро гелия – дефект массы вырастает почти вдвое, он становится равным 0,09%.

Обычно в качестве меры прочности ядра пользуются величиной энергии связи, приходящейся на 1 нуклон. Для тяжелых ядер E/M=7,5Мэв, а у промежуточных ядер несколько больше – 8,6Мэв. В этом разгадка большой устойчивости ядер промежуточных элементов.

Полная энергия связи для ядра дейтрона равна примерно 2,2Мэв, а для ядра урана 1780Мэв. Энергия должна выделятся и при делении тяжелых ядер, и при слиянии легких ядер – например, при синтезе двух ядер дейтерия в ядра гелия выделяется энергия порядка 24Мэв.

Из опытов установлено, что ядерные силы являются короткодействующими, т.е. действуют на очень малых расстояниях, их радиус действия порядка 10-15-10-14м. Таким образом, радиус действия ядерных сил в 10 тыс. раз меньше радиуса атома (10-10м). Ядерные силы, действующие между нуклонами в ядре, проявляют зарядовую независимость. Другими словами, ядерное взаимодействие не зависит от заряда ядерных частиц, т.е. ядерное взаимодействие одинаково как для пары одноименно заряженных протонов, так и для пары нейтронов или пары протон-нейтрон.

Экспериментально установлено также на очень малых расстояниях сильное отталкивание между нуклонами. Чем же можно объяснить ту необычайно крепкую связь, которая существует внутри ядра? В тридцатых годах XX века, когда складывалась теория ядра, физики знали только два сорта сил: силы тяготения и силы электромагнитные. Ни одной из этих сил нельзя было объяснить связь частиц в ядре порядка 7×106эв, а энергия связи электрона в оболочке атома около 10эв, отсюда сразу видно, как велики ядерные силы по сравнению с силами, например, удерживающими электроны в атоме. Вокруг любого электрического заряда существует электрическое поле. Оно существует независимо от того, есть ли вокруг него другие заряды или нет. О наличии этого поля можно судить по тому действию, какое оно оказывает на внесенный в него другой заряд.

В масштабах микромира электромагнитное излучение не непрерывно. Излучение происходит определенными порциями энергии – квантами. «Выражение заряд создает поле» здесь наполняется иным содержание: заряд испускает кванты поля. Взаимодействие между зарядами состоит в поглощении одним зарядом квантов излучения испускаемых другим зарядом, заряды как бы обмениваются квантами поля. Итак, взаимодействие происходит путем обмена квантами поля.

Советский ученый, лауреат Нобелевской премии И.Е. Тамм в 1934г попытался объяснить ядерные силы, удерживающие протоны и нейтроны в ядре при помощи обмена частицами. Однако им же было показано, что ни одна из известных тогда частиц – электрон, позитрон, нейтрино – не могут объяснить количественно ядерные взаимодействия, так как дают силы порядка 1010 раз меньше, чем наблюдаемые в действительности.

Вслед за Таммом в 1935г японский физик Хидеки Юкава предложил новую гипотезу, объясняющую, как происходят ядерные взаимодействия. Юкава попытался определить, какими должны быть гипотетические частицы, чтобы с их помощью осуществлялось ядерное взаимодействие. Оказалось, что требование малого радиуса действия ядерных сил приводит к обменным частицам с массой, превышающей массу электрона примерно в 200-300 раз. Эти частицы были названы мезонами.

Усилия многих ученых были направлены на то, чтобы обнаружить частицы, предсказанные Хидеки Юкава. В тридцатых годах, когда физики еще не имели в своем распоряжении мощных ускорителей, единственным источником частиц высокой энергии служили космические лучи.

Перейти на страницу: 1 2 3 4 5

О проекте

Мы создали этот проект для людей, которых интересует наука физика. Материалы на сайте представлены интересно и понятно.

Новые статьи

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце.
Энергия ветра
По оценке Всемирной метеорологической организации запасы энергии ветра в мире составляют 170 трлн кВт·ч в год.