тяготения пропорциональна обеим массам. Таким образом:
где m3 - масса Земли, mT - масса другого тела, r - расстояние от центра Земли до центра тела.
Продолжая изучение гравитации, Ньютон продвинулся еще на шаг вперед. Он определил, что сила, необходимая для удержания различных планет на их орбитах вокруг Солнца, убывает обратно пропорционально квадрату их расстояний от Солнца. Это привело его к мысли о том, что сила, действующая между Солнцем и каждой из планет и удерживающая их на орбитах, также является силой гравитационного взаимодействия. Также он предположил, что природа силы, удерживающей планеты на их орбитах, тождественна природе силы тяжести, действующей на все тела у земной поверхности (о силе тяжести мы поговорим позже). Проверка подтвердила предположение о единой природе этих сил. Тогда если гравитационное воздействие существует между этими телами, то почему бы ему не существовать между всеми телами? Таким образом Ньютон пришел к своему знаменитому Закону всемирного тяготения, который можно сформулировать так:
Каждая частица во Вселенной притягивает любую другую частицу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Эта сила действует вдоль линии, соединяющей эти две частицы.
Величина этой силы может быть записана в виде:
где и - массы двух частиц, - расстояние между ними, а - гравитационная постоянная, которая может быть измерена экспериментально и для всех тел имеет одно и то же численное значение.
Это выражение определяет величину силы тяготения, с которой одна частица действует на другую, находящуюся от нее на расстоянии . Для двух не точечных, но однородных тел это выражение правильно описывает взаимодействие, если - расстояние между центрами тел. Кроме того, если протяженные тела малы по сравнению с расстояниями между ними, то мы не намного ошибемся, если будем рассматривать тела как точечные частицы (как это имеет место для системы Земля - Солнце).
Если нужно рассмотреть силу гравитационного притяжения, действующую на данную частицу со стороны двух или нескольких других частиц, например силу, действующую на Луну со стороны Земли и Солнца, то необходимо для каждой пары взаимодействующих частиц воспользоваться формулой закона всемирного тяготения, после чего векторно сложить силы, действующие на частицу.
Величина постоянной должна быть очень мала, так как мы не замечаем никакой силы, действующей между телами обычных размеров. Сила, действующая между двумя телами обычных размеров, впервые была измерена в 1798г. Генри Кавендишем - через 100 лет после того, как Ньютон опубликовал свой закон. Для обнаружения и измерения столь невероятно малой силы он использовал установку, показанную на рис. 3.
Два шарика закреплены на концах легкого горизонтального стержня, подвешенного за середину к тонкой нити. Когда шар, обозначенный буквой А, подносят близко к одному из подвешенных шаров, сила гравитационного притяжения заставляет закрепленный на стержне шар сдвинуться, что приводит к небольшому закручиванию нити. Это незначительное смещение измеряется с помощью узкого пучка света, направленного на зеркало, укрепленное на нити так, что отраженный пучок света падает на шкалу. Проделанные ранее измерения закручивания нити под действием известных сил позволяют определить величину силы гравитационного взаимодействия, действующей между двумя телами. Прибор такого типа применение в конструкции измерителя силы тяжести, с помощью которого можно измерить весьма небольшие изменения силы тяжести вблизи горной породы, отличающейся по плотности от соседних пород. Этот прибор используется геологами для исследований земной коры и разведки геологических особенностей, указывающих на месторождение нефти. В одном из вариантов прибора Кавендиша два шарика подвешиваются на разной высоте. Тогда они будут по разному притягиваться близким к поверхности месторождением плотной горной породы; поэтому планка при надлежащей ориентации относительно месторождения будет слегка поворачиваться. Разведчики нефти заменяют теперь эти измерители силы тяжести инструментами, непосредственно измеряющими небольшие изменения величины ускорения силы тяжести g о которых будет сказано позже.
Кавендиш не только подтвердил гипотезу Ньютона о том, что тела притягивают друг друга и формула правильно описывает эту силу. Поскольку Кавендиш мог с хорошей точностью измерить величины , ему удалось также рассчитать величину постоянной . В настоящее время принято считать, что эта постоянная равна
Схема одного из опытов по измерению показана на рис.4.
К концам коромысла весов подвешены два шарика одинаковой массы. Один из них находится над свинцовой плитой, другой - под ней. Свинец (для опыта взято 100 кг свинца) увеличивает своим притяжением вес правого шарика и уменьшает вес левого. Правый шарик перевешивает левый. По величине отклонения коромысла весов вычисляется значение.