Для вывода преобразований Лоренца будем опираться лишь на “естественные” допущения о свойствах пространства и времени, содержавшиеся еще в классической физике, опиравшейся на общие представления, связанные с классической механикой:
1. Изотропность пространства
, т.е. все пространственные направления равноправны.
2. Однородность пространства и времени
, т.е. независимость свойств пространства и времени от выбора начальных точек отсчета (начала координат и начала отсчета времени).
3. Принцип относительности
, т.е. полная равноправность всех инерциальных систем отсчета.
Различные системы отсчета по-разному изображают одно и то же пространство и время как всеобщие формы существования материи. Каждое из этих изображений обладает одинаковыми свойствами. Следовательно, формулы преобразования, выражающие связь между координатами и временем в одной - “неподвижной” системе с координатами и временем в другой - “движущейся” системе
, не могут быть произвольными. Установим те ограничения, которые накладывают “естественные” требования на вид функций преобразования:
1. Вследствие однородности
пространства и времени преобразования должны быть линейными.
Действительно, если бы производные функций по
не были бы константами, а зависели от
то и разности
, выражающие проекции расстояний между точками 1 и 2 в “движущейся” системе, зависели бы не только от соответствующих проекций
, в “неподвижной” системе, но и от значений самих координат
что противоречило бы требованию независимости свойств пространства от выбора начальных точек отсчета. Если положить, что проекции расстояний вида x‘ =
=
зависят только от проекций расстояний в неподвижной системе, т.е. от x =
, но не зависит от
, то
при
т.е.
или
.
Аналогично можно доказать, что производные по всем другим координатам
также равны константам, а следовательно, и вообще все производные
по
суть константы.